Conditional Probability given Joint PDF

  Рет қаралды 174,932

Stats4Everyone

Stats4Everyone

Күн бұрын

Пікірлер
@Evil_Narwhal
@Evil_Narwhal 3 жыл бұрын
I really hate how the professors go over the simplest examples but then the homework has in depth problems like these. Thank you so much.
@leahwilliams3281
@leahwilliams3281 4 жыл бұрын
Seriously. Thank you. My professor didn't explain this very well, but it was totally on the homework. You did a great job explaining.
@mclovinyousaucin
@mclovinyousaucin 2 ай бұрын
you literally are the reason i’m gonna pass this module, not a single other video on the internet did it like you, exactly the terms and definitions i needed. GOD BLESS YOU ❤️❤️❤️
@Stats4Everyone
@Stats4Everyone 2 ай бұрын
So happy to hear that you found this content to be helpful! :-D
@kushalmohnot3808
@kushalmohnot3808 4 жыл бұрын
I've fallen in love; what an incredibly clear thought process!
@Stats4Everyone
@Stats4Everyone 4 жыл бұрын
Awesome! Happy to hear that this video was helpful :-)
@wanhope3660
@wanhope3660 4 жыл бұрын
explained in simple terms. helped me more than hours of listening in my probability class. Thank you !
@movocode
@movocode Жыл бұрын
Thank you sooo much - you helped me in very last moment of my exam prep - literally seeing this 1 hr before my exam starts. Love from India.
@Stats4Everyone
@Stats4Everyone Жыл бұрын
You're very welcome! I'm so happy that this video was helpful :-)
@StatsWithJesse
@StatsWithJesse 2 жыл бұрын
Great video - thank you. I studied applied mathematics a few years back, and I quickly forgot some important things. I needed this video- it was clear and concise.
@kkikkodan
@kkikkodan 11 ай бұрын
thanks so much. my sir did this in short but didn't give reasons for the way things were. so this was very helpful. love from India.
@cleo7663
@cleo7663 3 жыл бұрын
Thank you for saving my life. Seriously.
@topstuffspotter7878
@topstuffspotter7878 2 жыл бұрын
Great Explanation! and your voice is really sweet.
@Stats4Everyone
@Stats4Everyone 2 жыл бұрын
Lol. Shucks. Thanks :)
@baqerghezi1342
@baqerghezi1342 Жыл бұрын
Great video thank you. also we can see the answer is 1 from the support (1
@Stats4Everyone
@Stats4Everyone Жыл бұрын
Yup. I am just showing the math for that logic. Here is another video where the answer is maybe not so obvious: kzbin.info/www/bejne/eHOzhICClMSbhdE
@ahmetkarakartal9563
@ahmetkarakartal9563 2 жыл бұрын
you saved my life
@mirandaatangdithebe3893
@mirandaatangdithebe3893 4 жыл бұрын
Could'nt have asked for a clearer video, thank you sm.
@Stats4Everyone
@Stats4Everyone 4 жыл бұрын
Happy this video helped!
@darcash1738
@darcash1738 Ай бұрын
I see. so marginal is just integral in respect to the other var, with bounds according to that var. Then for conditional f|y it is f(x, y)/fy, where fy is the marginal prob. Then you plug in whatever the y val is, and do the integral in terms of x, with bounds updated to whatever the y val is.
@ihsanerben
@ihsanerben 6 ай бұрын
YA SEN NE BÜYÜK Bİ ADAMSIN BE KARDŞEİM
@tvvt005
@tvvt005 9 ай бұрын
8:14 hi, if instead of a specific value, if it were given Y
@ghitrifaldiadrian4324
@ghitrifaldiadrian4324 2 ай бұрын
your’re the best
@Stats4Everyone
@Stats4Everyone 2 ай бұрын
Thanks for the comment, glad you found this content to be helpful :)
@ghitrifaldiadrian4324
@ghitrifaldiadrian4324 2 ай бұрын
@@Stats4Everyone yes, it really is, i’m currently struggling a bit on this topic for my mid semester. Then i found your video and all was crystal clear
@pppeterrrr4776
@pppeterrrr4776 6 жыл бұрын
thanks, its very straightforward and clear
@ARCWIZARD
@ARCWIZARD 3 ай бұрын
Thx ❤
@izume2032
@izume2032 4 жыл бұрын
You saved me 😭💙 thank you so much
@mohitgupta3115
@mohitgupta3115 3 жыл бұрын
thank u so much , i wish my professor learn how to tech like you
@Stats4Everyone
@Stats4Everyone Жыл бұрын
Glad you found this video to be helpful :-)
@malcolmlamya8770
@malcolmlamya8770 8 ай бұрын
Thank you, it helps a lot. God bless.
@Stats4Everyone
@Stats4Everyone 7 ай бұрын
So happy to hear that this video was helpful!
@rye-bread5236
@rye-bread5236 Жыл бұрын
Jesus. I regret college. I could have been a fantastic electrician and probably make almost as much.
@chanakaramanayake8409
@chanakaramanayake8409 4 жыл бұрын
Thanks a lot. Good explanation. keep it up👍
@tvvt005
@tvvt005 9 ай бұрын
5:21 wait but isn’t Y still between 0 and x?
@ruanvieira2545
@ruanvieira2545 2 жыл бұрын
Great explanation, thanks!
@bilgegursoy2599
@bilgegursoy2599 5 жыл бұрын
you are my savior
@rheabali7691
@rheabali7691 6 жыл бұрын
how would we evaluate the conditional probability when y is "less than/equal to" say 1 instead of equalling 1?
@EWB438
@EWB438 5 жыл бұрын
P(Y
@Stats4Everyone
@Stats4Everyone 5 жыл бұрын
I know its been a while since you posted this question, though it is a really good one, so I made a video that might help with this concept: kzbin.info/www/bejne/eHOzhICClMSbhdE .......if this is too late for you, maybe it might help someone else with the same question. thanks for posting this comment!
@YokiWong
@YokiWong 6 жыл бұрын
Thank you so much for the great video!
@ottodvalishvili7601
@ottodvalishvili7601 6 жыл бұрын
great explanation .
@arnabbanerjee5833
@arnabbanerjee5833 5 жыл бұрын
Thank you so so much for uploading this vedio... It helped me a lot.!
@kasunpathirana9410
@kasunpathirana9410 2 жыл бұрын
So understandable
@vishwajiththippeswamy5714
@vishwajiththippeswamy5714 4 жыл бұрын
Thank you so much. Examples were very helpful :)
@Stats4Everyone
@Stats4Everyone 4 жыл бұрын
Glad it was helpful! :-)
@sheetalkumar4579
@sheetalkumar4579 3 жыл бұрын
why is the first part of the integral -> -inf to y for f(x,y)dx = 0 ? Shouldn't it be integrated in that range ?
@lynejomaa7365
@lynejomaa7365 7 жыл бұрын
tysm i have my stat final in 4 hours and might pass it thanks to this vid
@Flowerlifts111
@Flowerlifts111 7 жыл бұрын
did u pass
@lynejomaa7365
@lynejomaa7365 7 жыл бұрын
yes i did!!!! :D
@quantowen1124
@quantowen1124 3 жыл бұрын
Love it!! Could you please create playlists.
@Stats4Everyone
@Stats4Everyone Жыл бұрын
kzbin.info/aero/PLJDUkOtqDm6Ux8LX5-WFtkr0bH8OxE-XG
@fadikhattar290
@fadikhattar290 2 жыл бұрын
Im in love
@ericliu7705
@ericliu7705 5 жыл бұрын
Thank you, this was very helpful
@rakeshkumar-jw5lb
@rakeshkumar-jw5lb 3 жыл бұрын
first u took good example with good explaitions
@rakeshkumar-jw5lb
@rakeshkumar-jw5lb 3 жыл бұрын
so it is good to all
@usernameispassword4023
@usernameispassword4023 Жыл бұрын
Thank you so much ma'am!
@kahlanfaiq1510
@kahlanfaiq1510 5 жыл бұрын
keep up the good work :-)
@tsunhimwong5520
@tsunhimwong5520 4 жыл бұрын
I don't know when should we use integration?
@Stats4Everyone
@Stats4Everyone 4 жыл бұрын
For all continuous distributions. See how for this distribution, x and y are between 0 and 2 --- so for example, x could be 1.22222 and y could be 0.3333 ... here x and y are continuous, so we use integration. If x and y could only take discrete set of values, then we would use a sum rather than integrate.
@AdrianQuevedoperfil
@AdrianQuevedoperfil 6 жыл бұрын
thanks Michelle!
@Morphine-691
@Morphine-691 2 жыл бұрын
❤️❤️👌😊👍🔥
@granthill5263
@granthill5263 2 жыл бұрын
Thank you so much!
@tulikamal
@tulikamal 6 жыл бұрын
Thanks for the video
@alinazainab8656
@alinazainab8656 4 жыл бұрын
Thank you so much ❤️
@Stats4Everyone
@Stats4Everyone 4 жыл бұрын
You’re welcome 😊 Happy to hear you found this video helpful
@gerardoelizondo9182
@gerardoelizondo9182 3 жыл бұрын
THank you!!
@harshitarathore7618
@harshitarathore7618 3 жыл бұрын
It's helpful ❤️
@Stats4Everyone
@Stats4Everyone 3 жыл бұрын
Glad you found this video helpful! :-)
@JeanAlesiagain3
@JeanAlesiagain3 4 жыл бұрын
You are good. Thank you
@Stats4Everyone
@Stats4Everyone 4 жыл бұрын
Happy to hear you found this video to be helpful! :-)
@dianal6086
@dianal6086 5 жыл бұрын
What would be the answer for P(X>1|Y=1.5)? Would the integral bound for the conditional prob. be between 1.5 and 2 instead of 1 and 2?
@Stats4Everyone
@Stats4Everyone 5 жыл бұрын
The answer would still be one, since x must be more than y, and you are saying that y now is 1.5. The way the steps would change, is we would plug in y=1.5 instead of y=1. the bounds for the non-zero part of the integral would be from 1.5 to 2 ... as you said.
@wondebest9973
@wondebest9973 3 жыл бұрын
my love how are you?
@sanjaykumarsinha3058
@sanjaykumarsinha3058 4 жыл бұрын
The video was very informative! But i don't understand one thing. We know, if the random variable is continuous then probability at a particular point is zero.(The reason is we don't cover any area and integration is simply area under curve). But while calculating conditional pdf we take it as a non zero value. { fy(1)= .5, let's say}.Why is that?
@Stats4Everyone
@Stats4Everyone 4 жыл бұрын
Hi Sanjay - Good question - the answer to this question has to do with the difference between a discrete and continuous distributions. When y is discrete (say Y = 1 for a Head on a coin, and Y = 0 for a Tail on a coin), the marginal distribution of y evaluated when Y = 1 maybe non-zero. This is because fy(1) is defined to be Pr(Y=1), and if y is discrete, the probability that Y=1 is 0.5 in this example. However, if y is continuous, as in the example in this video, fy(1) = 0 (it does not equal 0.5... it must always be zero when y is continuous). Notice, in this video, I never found the probability Y = 1... in other words, I never evaluated fy(1). Evaluating Pr(Y=1) to find a conditional probability is possible when y is discrete.... though when Y is continuous, we do not find Pr(Y=1), rather we directly find the conditional distribution fx|y by finding the marginal of y and then plugging in the value of y while integrating over x... image we have a two dimensional curve -- the conditional probability is a slice of that two dimensional curve at a particular value of y .
@danialdunson
@danialdunson 3 жыл бұрын
that was awesome!
@yutikasingh5443
@yutikasingh5443 5 ай бұрын
Thank you!!
@sln7736
@sln7736 6 жыл бұрын
what if (x>1|y>1)? how we find it?
@niveyoga3242
@niveyoga3242 6 жыл бұрын
Did you watch it at 1.25x too as in the other video ^^
@Stats4Everyone
@Stats4Everyone 5 жыл бұрын
I know its been a while since you posted this question, though it is a really good one, so I made a video that might help with this concept: kzbin.info/www/bejne/eHOzhICClMSbhdE .......if this is too late for you, maybe it might help someone else with the same question. thanks for posting this comment!
@johnsonokeyo545
@johnsonokeyo545 2 жыл бұрын
👍
@DD27_27
@DD27_27 6 жыл бұрын
Thank you so much
@tommyharyanto7935
@tommyharyanto7935 3 жыл бұрын
thank you
@mahsan151
@mahsan151 7 жыл бұрын
Hello- your videos were very helpful in understanding conditional joint PDF. Can you please share how to solve if the question was something like: P(X>1lY>1)? Thanks
@Stats4Everyone
@Stats4Everyone Жыл бұрын
Great question! This video is similar to the example you posted: kzbin.info/www/bejne/eHOzhICClMSbhdE
@albertosafra4003
@albertosafra4003 6 жыл бұрын
What program is she writing on anyone know?
@Stats4Everyone
@Stats4Everyone 5 жыл бұрын
I think I used SmoothDraw for this video. I also really like OneNote.
@munyaradzindumeya5444
@munyaradzindumeya5444 2 жыл бұрын
obrigado
@ActualDayZGod
@ActualDayZGod 7 жыл бұрын
nice video, thanks
@ackronymm
@ackronymm 6 жыл бұрын
thank you so much)
@WmsFootball30
@WmsFootball30 7 жыл бұрын
Good work through, would have been better if the problem wasn't intuitively obvious as to what the answer was though.
@Stats4Everyone
@Stats4Everyone 5 жыл бұрын
yeah, I agree. sometimes its nice going through the steps and showing that intuition is actually correct.
@birrawat8856
@birrawat8856 7 жыл бұрын
we need definetion of joint probability distribution please give me clear definetion
@ActualDayZGod
@ActualDayZGod 7 жыл бұрын
In this video, she actually discussed 2 somewhat different mateiral. the first one is the joint probability distribution (the marginal and joint distribution). and the 2nd one is conditional distribution of the joint probability distribution. The joint probabilty distribution (f X,Y (x,y)) is basically a way to express a joint events (2 or more events) which is observed simultaneously in purpose to find their behaviour and relationship. Most times, the random variables are connected, but when they are not connected to each other, we call them independent variable. Which we can say the outcome of an event from the joint events will not affect other events in the joint events. So in short, joint distributions would be useful to describe the probability of 2 or more events happening simultaneously (which they might or might not be independent to one another). Damn I know im not explaining stuffs clear here,(atleast i tried) but at this point i just realized it is just too many things to mention. So probably i will stop trying to explain in detail and I suggest you can search stuffs online. try searching: - joint probability distribution (IMPORTANT please be clear the difference regarding independency, this will help a lot in calculation and an unclear understanding will confuse you a lot) - marginal distributions - Conditional probablity and its properties (like expected value and stuffs) - multivariable integration (this is not neccessary, but might come handy in integrating multivariable integrals. This mostly used to find marginal distributions, etc.), probably what you wanna pay attention to is how to set the lower and upper bound of the integration since it is a bit tricky sometimes. - Last, this is just an optional. If you wanna find out the "relationship" of the random variables, you can learn yourself covariance (Cov(X,Y)) and coefficient of Correlation. Hope this help even if just a bit.. no one be salty please. And sorry if I type or explain anything wrong, im no expert.
Conditional Distribution Function With Dependent Limits
13:09
Stats4Everyone
Рет қаралды 8 М.
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
Calculating a Cumulative Distribution Function (CDF)
8:44
MIT OpenCourseWare
Рет қаралды 586 М.
Probability - Joint Probability & Double Integral
20:40
Dr. Vivian
Рет қаралды 45 М.
MA 381: Section 8.1: Joint Probability Density Functions
9:52
Rose-Hulman Online
Рет қаралды 141 М.
L06.7 Joint PMFs and the Expected Value Rule
10:16
MIT OpenCourseWare
Рет қаралды 86 М.
Cumulative Distribution Functions and Probability Density Functions
11:02
The Organic Chemistry Tutor
Рет қаралды 684 М.
Examples of Conditional Expectation for Discrete and Continuous Case
23:46
The Dome Paradox: A Loophole in Newton's Laws
22:59
Up and Atom
Рет қаралды 1,1 МЛН
Continuous Random Variables: Probability Density Functions
23:16
MrNichollTV
Рет қаралды 715 М.