Lecture 15: Object Detection

  Рет қаралды 62,352

Michigan Online

Michigan Online

Күн бұрын

Пікірлер: 44
@zhaobryan4441
@zhaobryan4441 9 ай бұрын
This is the best lecture that I have ever seen since SICP,so beautiful
@glowish1993
@glowish1993 11 ай бұрын
thank you for posting such high-quality lectures online for free!! amazing lecturer, slides and content
@neilteng1735
@neilteng1735 3 жыл бұрын
Really love this step by step walk through! Hugh improve than the 2017cs231n course!
@tunaipm
@tunaipm 3 жыл бұрын
Another amazing class! I look forward to watching the updated version describing the use of Transformers in the coming years. Thank you Dr. Justin.
@terrelldean9481
@terrelldean9481 3 жыл бұрын
I know it's quite off topic but does anyone know of a good site to watch new series online?
@chiendvhust8122
@chiendvhust8122 2 жыл бұрын
@@samuelimran3429 Can you send a link? I search google but dont see anything :(
@sagniksinha5831
@sagniksinha5831 2 ай бұрын
@@chiendvhust8122 latest videos are not publicly available
@sachavanweeren9578
@sachavanweeren9578 2 жыл бұрын
Great lecture, very welll explained, step by step. Maybe the best I found so far.
@TomChenyangJI
@TomChenyangJI 4 ай бұрын
I watched a lecture on RNN delivered by him on Stanford channel on YT, that was good
@harshdeepsingh3872
@harshdeepsingh3872 3 ай бұрын
@kamranmehdiyev8561
@kamranmehdiyev8561 11 ай бұрын
57:53 should be "from anchor box to proposal box"
@NielsRogge
@NielsRogge 3 жыл бұрын
Looking at this coming from NLP, NLP seems like so much easier where you just have a Transformer with a sequence classification/token classification head on top.. Here you have a very complex way of computing mAP, region proposals, non-maximum suppression procedure, anchor generation... Luckily, the introduction of DETR by Facebook AI (which replaces a lot of these handcrated features by a Transformer which learns everything end-to-end) seems really refreshing :)
@adityarajpoot8214
@adityarajpoot8214 2 жыл бұрын
too late now
@mailoisback
@mailoisback 2 жыл бұрын
He is a great lecturer!
@daitran8266
@daitran8266 3 жыл бұрын
Thank you very much for sharing these useful resources.
@DED_Search
@DED_Search 3 жыл бұрын
49:59 how to project RoI onto feature map exactly? 50:10 does snapping projection to feature map grid affect transformation parameters of the bounding box regression?
@itchainx4375
@itchainx4375 Жыл бұрын
No you get wrong understanding. Box was obtained using heuristic methods on the original picture. The convnet can be seen as a transformaion. It converts the cat's picture into feature map. The convert process is the process of projection
@satyamgaba
@satyamgaba 2 жыл бұрын
31:20 Purple box should be union of both the box. Here is it overflowing
@lifanzhong9782
@lifanzhong9782 Жыл бұрын
Thank you Justin!!
@krishnatibrewal6640
@krishnatibrewal6640 2 жыл бұрын
Surprisingly there's no mention of YOLO which makes RCNN family obsolete
@zainbaloch5541
@zainbaloch5541 2 жыл бұрын
Yeah!
@itchainx4375
@itchainx4375 Жыл бұрын
Seems like teacher don't like Yolo. 2022Winter Lectures not even a word about yolo was mentioned
@lifanzhong9782
@lifanzhong9782 Жыл бұрын
yes I'm curious about it too. Only a flash of yolo paper reference at 1:03:57
@davidrwasserman
@davidrwasserman 2 ай бұрын
When we compute the average precision (42:52) is this for one image? a batch? the whole training set?
@lumin-ec1mf
@lumin-ec1mf 24 күн бұрын
all test images
@wireghost897
@wireghost897 Жыл бұрын
Great lecture. Thanks a lot.
@shazzadhasan4067
@shazzadhasan4067 2 жыл бұрын
thank you for making available, amazing lec
@Davide-bx3js
@Davide-bx3js 2 жыл бұрын
Amazing lecture
@yahaisha
@yahaisha 2 жыл бұрын
best lecture..i like..tq
@neelambujchaturvedi6886
@neelambujchaturvedi6886 4 жыл бұрын
Why do the authors of the RCNN paper use a log scale transform to get the new scale factors for width ?
@zubaidaalsadi4313
@zubaidaalsadi4313 8 ай бұрын
I can't download the slides , is there any other way to get it ?
@cc98-oe7ol
@cc98-oe7ol 6 ай бұрын
The resolution of these slides are quite high, so their size often exceed like 100 MB. Maybe the network is the main issue.
@QuyetNguyen-sg9dq
@QuyetNguyen-sg9dq 4 жыл бұрын
thanks you very much
@DED_Search
@DED_Search 3 жыл бұрын
42:12 I am really confused about why all dog detections are considered positive here (precision = 3/5)? Shouldn’t we set a threshold? Thanks.
@DED_Search
@DED_Search 3 жыл бұрын
59:00 I don’t quite get the 2k anchor (2 scores) vs 1k (1 score) part. Hmmm
@elkwang4357
@elkwang4357 2 жыл бұрын
Is Johnson the guy in the Stanford University?
@geen160
@geen160 Жыл бұрын
yessss
@hehehe5198
@hehehe5198 Жыл бұрын
Does anyone have link to the 2020 version?
@davidrwasserman
@davidrwasserman 2 ай бұрын
drive.google.com/drive/folders/1LXriM9h8WNJGErlYQXIrNNytAzVaHBjF?usp=sharing
@DED_Search
@DED_Search 3 жыл бұрын
23:00 and 23:41 how is transformation learnt invariant to RoI warp?1. Warpping changes height and width. 2. Warped RoI are fed into CNN. I’d appreciate if anyone can shed some light here. Thanks.
@itchainx4375
@itchainx4375 Жыл бұрын
Do you know the answer now?I have same question
@lukealexanderhwilson
@lukealexanderhwilson 3 жыл бұрын
I wonder if mean average precision could be calculated faster while still incorporating the performance of the bounding boxes by simply factoring the detections by their IOU's and using the results instead of rerunning at many different thresholds and averaging. For example, perfect Mean Average Precision would impossibly be the first detections all correctly identifying the detectable objects in the image, and the detections all had an IOU of 1.0. Essentially rather than calculating the area under a curve on a 2D plot with precision and recall and replotting many times at various thresholds. We would instead calculate a 3d volume, where a 2d plot of detections matched against a third dimension that represents the IOU (or some factored IOU if it's better). It seems to me that that would achieve the same results more quickly and elegantly, if anyone knows more though I would love to hear about it!
@itchainx4375
@itchainx4375 Жыл бұрын
1:04:13 where is yolo :)
@phangb580
@phangb580 6 ай бұрын
37:10
Lecture 16: Detection and Segmentation
1:10:07
Michigan Online
Рет қаралды 34 М.
Lecture 8: CNN Architectures
1:12:03
Michigan Online
Рет қаралды 46 М.
When u fight over the armrest
00:41
Adam W
Рет қаралды 26 МЛН
Миллионер | 3 - серия
36:09
Million Show
Рет қаралды 1,1 МЛН
Каха и лужа  #непосредственнокаха
00:15
Triple kill😹
00:18
GG Animation
Рет қаралды 18 МЛН
R-CNN: Clearly EXPLAINED!
18:32
Soroush Mehraban
Рет қаралды 34 М.
Lecture 2: Image Classification
1:02:15
Michigan Online
Рет қаралды 74 М.
Lecture 14: Visualizing and Understanding
1:12:04
Michigan Online
Рет қаралды 24 М.
YOLO Object Detection Explained for Beginners
35:34
AI Sciences
Рет қаралды 24 М.
Lecture 11 | Detection and Segmentation
1:14:26
Stanford University School of Engineering
Рет қаралды 630 М.
Lecture 9: Hardware and Software
1:12:22
Michigan Online
Рет қаралды 26 М.
Lecture 5: Neural Networks
1:02:07
Michigan Online
Рет қаралды 41 М.
DETR: End-to-End Object Detection with Transformers (Paper Explained)
40:57
Lecture 18: Videos
1:15:21
Michigan Online
Рет қаралды 22 М.
Philipp Krähenbühl - Point-based object detection
1:02:40
Vision & Graphics Seminar at MIT
Рет қаралды 13 М.
When u fight over the armrest
00:41
Adam W
Рет қаралды 26 МЛН