Why Penrose Tiles Never Repeat

  Рет қаралды 1,338,677

minutephysics

minutephysics

Күн бұрын

The first 200 people to brilliant.org/... get 20% off an annual premium subscription to Brilliant. Thanks to Brilliant for their support.
This video is about a better way to understand Penrose tilings (the famous tilings invented by Roger Penrose that never repeat themselves but still have some kind of order/pattern).
This project was a collaboration with Aatish Bhatia (aatishb.com).
REFERENCES
Explore Penrose and Penrose-like patterns: aatishb.com/pa...
Video by Derek Muller/Veritasium about Penrose Patterns: • The Infinite Pattern T...
Music algorithmically generated, algorithm designed by Henry Reich
N.G. de Bruijn’s paper introducing the pentagrid/Penrose idea: www.math.brown...
De Bruijn, N.G., 1981. Algebraic theory of Penrose’s non-periodic tilings of the plane. Kon. Nederl. Akad. Wetensch. Proc. Ser. A, 43(84), pp.1-7.
Here are some excellent in-depth references on how to construct Penrose Tiles Using the Pentagrid Method:
Penrose Tilings Tied up in Ribbons by David Austin: www.ams.org/pub...
The Empire Problem in Penrose Tilings by Laura Effinger-Dean: www.cs.williams...
Pentagrids and Penrose Tilings by Stacy Mowry & Shriya Shukla: web.williams.e...
Penrose Tiling by Andrejs Treibergs: www.math.utah.e...
Algebraic Theory of Penrose's Non-Periodic Tilings of the Plane by N. G. de Bruijn: www.math.brown...
Particularly good and helpful, and (we think) an undergrad thesis which is impressive!: www.cs.williams...
An interesting popular science read on the discovery on quasicrystals and their connection to Penrose Tilings:
The Second Kind of Impossible by Paul Steinhardt: bookshop.org/b...
Support MinutePhysics on Patreon! / minutephysics
Link to Patreon Supporters: www.minutephysi...
MinutePhysics is on twitter - @minutephysics
And facebook - / minutephysics
Minute Physics provides an energetic and entertaining view of old and new problems in physics -- all in a minute!
Created by Henry Reich

Пікірлер: 961
@carykh
@carykh 2 жыл бұрын
4:25 Wow, the proof of why it never repeats is pretty elegant! It also makes sense why a "tri-grid" (triangular tiling) DOES repeat, because sin(120)/sin(60) = sqrt(3)/2/sqrt(3)/2 = 1/1 = 1, which is rational. That explains why, when you take a ribbon of a triangular tiling, you see the same number of upside-down triangles and rightside-up triangles: it's a 1:1 ratio.
@ikbintom
@ikbintom 2 жыл бұрын
Maybe on a curved surface, the ratio can be changed to become rational and a pentagonal tiling does repeat
@WildEngineering
@WildEngineering 2 жыл бұрын
woah nice catch cary :)
@NatLJ
@NatLJ 2 жыл бұрын
That’s pretty interesting!
@chiken-nugies
@chiken-nugies 2 жыл бұрын
@TimesByTwo you just did that
@umbrimea
@umbrimea 2 жыл бұрын
Oh hey cary
@McLoelz
@McLoelz 2 жыл бұрын
I saw a bus seat pattern just a couple of weeks ago and it drove me nuts that the pattern seemed like it should repeat but every time I thought I figured it out there were one or two elements that were off. Thank you for reassuring me that I'm not crazy! And educating me in an entertaining way at the Same time.
@mctooch
@mctooch Жыл бұрын
I saw that pattern in the back of bus seats too. Just awful the things some kids carve in there!
@nito8066
@nito8066 2 ай бұрын
ok can some expert explain why wouldnt there be a pattern
@dannyboy1350
@dannyboy1350 2 ай бұрын
@@nito8066 rewatch the video
@nito8066
@nito8066 2 ай бұрын
@@dannyboy1350 nah
@dannyboy1350
@dannyboy1350 2 ай бұрын
@@nito8066 then have have fun not knowing the answer to your question.
@onatic6346
@onatic6346 2 жыл бұрын
you know it’s a good day when minutephysics drops some obscure math problems
@rgw5991
@rgw5991 2 жыл бұрын
scientists make me sad
@anonymousfish2456
@anonymousfish2456 2 жыл бұрын
@@rgw5991 why
@rgw5991
@rgw5991 2 жыл бұрын
@@anonymousfish2456 crippling depression IDK?
@calanholmes6139
@calanholmes6139 2 жыл бұрын
@@rgw5991 1a
@anonymousfish2456
@anonymousfish2456 2 жыл бұрын
@@rgw5991 why do scientists make you sad?
@thefreshest2379
@thefreshest2379 2 жыл бұрын
The golden ratio shows up in nature a lot because it is the main part of an efficient packing algorithm. Thanks Numberphiles!
@noshiko5398
@noshiko5398 2 жыл бұрын
do you remember which numberphile video that was? i just checked and they have a bunch of videos on the golden ratio
@maxthomas-bland4842
@maxthomas-bland4842 2 жыл бұрын
@@noshiko5398 the 'most irrational' number
@noshiko5398
@noshiko5398 2 жыл бұрын
@@maxthomas-bland4842 thank you!!!
@davidtitanium22
@davidtitanium22 2 жыл бұрын
Finally i understand why it never repeats, veritasium made an interesting showcase but i never understood why it never repeats
@iwanttwoscoops
@iwanttwoscoops 2 жыл бұрын
I still don't get why it doesn't repeat. Could someone help? edit: oh my God lol, I thought the video ended at 3:15 when he mentioned the friend's website. Too used to clicking away from sponsors :p
@msclrhd
@msclrhd 2 жыл бұрын
@@iwanttwoscoops I don't have an exact proof, but know the general gist of how it works. With the square and triangular grids, notice how all the intersections of lines all meet at a point, and that the spokes radiating out of that point are all regular and form a neat tiling pattern. Then compare that with the pentagrid, where only some lines meet each other, and you get groups of "near misses" where several lines almost (but not quite) meet. -- It's that almost but not quite meeting that makes the pattern non-repeating. The number of spokes S is 2 times the number of parallel line sets L, so S=4 for square (L=2) grids, S=6 for triangualar (L=3) grids, and S=10 for penta (L=5) grids. The angle between two closest parallel line sets is 360/S (90 for square, 60 for triangular, 36 for pentagrids). Note how for pentagrids, Henry (in this video at 1:50) notes that the lines intersect at either 36 degrees or 72 degrees -- that is, when a line intersects at 72 degrees (2x36) there is one line missing. I suspect that this also plays a part in figuring out why the tiling can't repeat. The only bit left really to prove (which is the part I'm not sure on) is proving that you can't make it so that everywhere in a pentagrid where at least 2 lines meet, that there is at least one of those points that does not have 10 spokes (or stated another way, has at least 1 angle between the connecting lines that is 72 degrees).
@NotSomeJustinWithoutAMoustache
@NotSomeJustinWithoutAMoustache 2 жыл бұрын
@@iwanttwoscoops Rather than clicking away just press L (forward 10 seconds) 6 times to jump forward by a minute. If the sponsorship is still going just press 3 times more, since *most* sponsors are between 60 and 90 seconds iirc. If you actually look at the video buffer rather than the recommended videos list you might sometimes see that not only is the video only halfway through, but, for some channels, they actually go through the trouble of chaptering the ads ie the video literally has the ads' beginning and end timestamped, and marked on the video bar. Lastly, there's also the video hotspots on videos which mark the most replayed portion of a video, and *sometimes* that just so happens to be after the ad. Hope this helps!
@veritasium
@veritasium 2 жыл бұрын
Great explanation Henry!
@Razorcarl
@Razorcarl Жыл бұрын
Omg veritasium
@BlueAppl337
@BlueAppl337 Жыл бұрын
ITS VERITASIUM HIMSELF
@laxyajena4735
@laxyajena4735 Жыл бұрын
What only 3 reply 43 like c'mon
@desi_bhai_
@desi_bhai_ Жыл бұрын
my favourite youtuber here
@DevLances89
@DevLances89 Жыл бұрын
Bruh only 88 likes that explains why henry doesn't have boring guys in comment sections
@TesserId
@TesserId 2 жыл бұрын
I notice that they're said to be _quasiperiodic_ and not nonperiodic. This is the thought that came to mind when you started laying out the _parallel ribbons,_ because they definitely have at least some periodic nature.
@lonestarr1490
@lonestarr1490 2 жыл бұрын
It's actually not so easy to put the difference between _quasi-periodic_ and _not at all periodic_ in rigid terms.
@npip99
@npip99 2 жыл бұрын
It's quasiperiodic because a given particular sequence of tiles along a ribbon does repeat over and over again. However, its repetitions occur at irregular intervals, and is overall still non-periodic as well. It's a bit different than a sequence of integers in which there is no repetition at all, that wouldn't have the feature of quasiperiodic.
@cheshire1
@cheshire1 2 жыл бұрын
@@npip99 if you keep generating random integers you will find every finite sequence infinitely often, so your definition would make random numbers quasiperiodic.
@lonestarr1490
@lonestarr1490 2 жыл бұрын
@Artem Down He didn't said that the sequence of integers is random. Could simply be a strictly increasing sequence of integers; then you definitely have no repetition.
@kazedcat
@kazedcat 2 жыл бұрын
That is the difference. Quasiperiodic will not give you all possible sequence. Some sequences are guaranteed not to appear in quasi periodic sequence. Like primes. Primes are not random it is guaranteed that no primes will be divisible by 6 or 10 or 15.
@lauriethefish2470
@lauriethefish2470 2 жыл бұрын
I love how the music is algorithmically generated. Really fits the video!
@finnlyonn237
@finnlyonn237 2 жыл бұрын
It does sound pretty horrible tho
@Glendragon
@Glendragon 2 жыл бұрын
@@finnlyonn237 and very annoying, I couldn't focus on the content
@lonestarr1490
@lonestarr1490 2 жыл бұрын
@@Glendragon Because it kinda repeats, but never actually does *brain boom*
@nahometesfay1112
@nahometesfay1112 2 жыл бұрын
@@Glendragon I actually liked it, but I can definitely see how it could be annoying or distracting.
@SgtSupaman
@SgtSupaman 2 жыл бұрын
@@nahometesfay1112 , it would have been alright if it hadn't been so loud.
@stoatystoat174
@stoatystoat174 2 жыл бұрын
The Pattern Collider is fun and free and doesnt ask for any email of details or push cookies at you. Much appreciated Aatish. The 6-Fold Stepped Plane (3:27 bottom left) looks like a marching crowd to me. To make it select 6 Fold Symmetry and slide the Disorder to the max right. Cheers Mr Henry
@irrelevant_noob
@irrelevant_noob Жыл бұрын
Used to have that pattern on a rug a long time ago, it always mesmerized me into checking how quickly i can switch between seeing a pattern of stairs going "up" in one direction vs in another... or seeing the "inner" bits as concave vs convex. :-) PS Had no idea those were the terms i'll eventually use to describe the options, for that kiddo-aged me it was just "bulgy" vs "holey". ^^
@jjunior48
@jjunior48 2 жыл бұрын
this video makes me blame my old geometry teacher for not making class this fun
@DanielBParada
@DanielBParada 2 жыл бұрын
I would’ve killed myself if my 8th grade geometry teacher busted out a grid with 5 axises like I wasn’t already struggling with two lmao
@fnoigy
@fnoigy 2 жыл бұрын
Largely it's because teachers are paid $50k a year to cover a completely new topic every day on top of crowd control, documentation, assignment creation, grading for up to 120 students every other night, and assessments. A content creator maybe needs to make a video every couple weeks at least, can have a team, and can devote most of their time for just that one project.
@jjunior48
@jjunior48 2 жыл бұрын
@@fnoigy yes obviously and yeah teachers should be paid more although i don’t know that everything you said is quite true
@fnoigy
@fnoigy 2 жыл бұрын
@@jjunior48 As a former educator of 10 years, there's actually more i didn't bother to mention, such as meetings, frequent trainings, conferences, procuring supplies, writing emails, etc.
@jjunior48
@jjunior48 2 жыл бұрын
@@fnoigy oh maybe consider moving to new jersey i have friends who are teachers and my parents are teachers and i know they don’t have to create their own assignments because that’s normally supplied by curriculum director, they don’t have grading that often, etc etc
@VJDugan
@VJDugan 2 жыл бұрын
The reason why the tiling is aperiodic can be seen more readily when observing the cut-projection method for constructing it. The Penrose tiling can be seen as a projection of the 5D integer lattice, Z^5, to a specially chosen 2D subspace -- the squares closest to this plane project onto the plane as rhombuses. The a-periodicity comes from the fact that Z^5 is a regular lattice and the 2D plane lies at irrational angles to the Z^5 lattice root vectors.
@StackCanary
@StackCanary 2 жыл бұрын
Hey it's Dugan Hammock!👋I was just watching your QGR presentation on this very subject a few days ago. I agree, I prefer the cut-projection method for quasicrystal construction but it's neat to see the multi-grid method mentioned here. Quasi-order is so fascinating, especially when investigating physical uses. The fact that quasicrystals can inherit symmetries from their higher-dimensional parent crystals (as in Fibonacci) is intriguing. There was a great paper earlier this year about using a Fibonacci-based quasi-periodic drive system to stabilize a quantum computer against several error modes via emergent dynamics (DOI 10.48550/arXiv.2107.09676 for preprint). I think I'm quasi-obsessed but I'm still trying to wrap my head around some of the QGR stuff you work on. 🤯
@VJDugan
@VJDugan 2 жыл бұрын
@@StackCanary Thank you! 👋 I should note that the multi-grid method allows for a much wider variety of tilings than the cut-project method. Only certain special arrangements of multi-grids can be re-contextualized into a cut-project scheme from a regular lattice. Also there are cut-project schemes which can not be re-contextualized as multi-grid constructions. It is also possible to a cut-project of an arbitrary honeycomb or well-behaved tiling -- it's is possible to take a cut-project of a quasicrystal tiling to get a more different quasicrystal tiling in a smaller dimension.
@ReasonMakes
@ReasonMakes 2 жыл бұрын
My brain exploded trying to read this lol. Sounds awesome but I have no idea where I would even begin with something like that.
@ijchua
@ijchua 2 жыл бұрын
@VJDugan I am not a mathematician, but what you wrote gave me an intuition to why there are no solutions in radicals to the quintic (or higher order) equation (i.e. Abel's impossibility theorem).
@haipingcao2212_.
@haipingcao2212_. 2 жыл бұрын
@@VJDugan ΩΩΩΩ
@phyllostomus
@phyllostomus 2 жыл бұрын
Are you familiar with quasicrystals? They are similar to normal crystals, but instead of having a normal repeating unit cell their atoms are-you guessed it-penrose tiled More or less). They were long predicted and made in the lab, but only recently have been found in nature. Could make an interesting video!
@DiowE
@DiowE 2 жыл бұрын
I will check it out. [DiowE]
@Alexagrigorieff
@Alexagrigorieff 2 жыл бұрын
They got the Nobel Prize for quasicrystals
@Shr3dward
@Shr3dward 2 жыл бұрын
check out the book 'the second kind of impossible'
@anon6975
@anon6975 2 жыл бұрын
Hey! That is part of the video where I first heard about this (Veritasium's, 2 years ago) Personally, I thought this had a more elegant mathematical proof but touched on fewer outside implications(Not really a fault of minutephysics, though. Just different styles)
@SaiGanesh314
@SaiGanesh314 Жыл бұрын
Wow! I'm really into this now. Could you perhaps share any resources on this? I would love to see how far the research has come on this subject...
@YoshiMario69
@YoshiMario69 Жыл бұрын
Art and Math are best friends. By themselves a lot of people are intimidated by them, yet they can help explain each other and they both in turn become approachable for everyone ❤❤❤
@MrDarren690
@MrDarren690 Жыл бұрын
For sure! Apparently a lot of visual art employs the golden ratio, a mathematical constant
@rashiro7262
@rashiro7262 2 жыл бұрын
I watched Veritasium's video about Penrose tiles 2 years ago and I couldn't understand why it's never repeating, but your video made it very clear! Thank you!
@orstorzsok6708
@orstorzsok6708 Жыл бұрын
I suppose - as I remember - that the aim of that video was not to prove this attribute.
@grayaj23
@grayaj23 2 жыл бұрын
That was simple and intuitive. And my respect for Penrose only increases the more I know about his work.
@HershO.
@HershO. 2 жыл бұрын
4:49 This was a cool proof! Pretty much the highlight of the video. Also nice to see minutephysics drop.
@Manabender
@Manabender 2 жыл бұрын
I opened the Pattern Collider and, for some reason, my first experiment was to play with 3-fold symmetry. Then I shifted the pattern variable down to 0 and got a very nice result that CGP Grey would like. Hexagons are the Bestagons.
@WebGrrrlToni
@WebGrrrlToni 8 ай бұрын
Thanks you so much for creating this super informative video!!❤❤
@gimmytomas
@gimmytomas 2 жыл бұрын
This is the perfect kind of math/science video we need. Thank you. I wish other channels were as good as yours.
@ZacharyVogt
@ZacharyVogt 2 жыл бұрын
The premise of this video exactly aligned with my experience. I believed this conclusion because sources I trusted said so, but it was deeply unsatisfying, because their arguments never truly made me understand WHY we KNEW the pattern couldn't repeat. THIS video finally scratched that itch. From unrelated concepts, I eventually absorbed how different rational and irrational are, and new neurons have formed in my brain to link Penrose to my brain's continent of math knowledge.
@adamlaceky8127
@adamlaceky8127 2 жыл бұрын
Go back to the beginning, with the green & blue tiles. If you cross your eyes, like it's a stereoscopic image, you can see very well defined straight lines following the pentagrid. Line up two areas with identical patterns, and the pentagrid pops out like it's floating above the Penrose tiles.
@JosiahKeller
@JosiahKeller 2 жыл бұрын
That is so rad!
@TheFinagle
@TheFinagle 8 ай бұрын
I love how you acknowledged your explanation doesn't meet the requirements of a proof, but still gives us enough baseline information to follow why without needing a math degree to follow along.
@heartofdawn2341
@heartofdawn2341 2 жыл бұрын
The binary numbers at the start are also non-periodic. If you count from zero up and put all of the numbers in a single row 0110111001011101111000... You can get an infinite number of repeating segments of any size, but since each number is larger than the previous, the pattern never repeats Likewise if you do it with decimal numbers you'll eventually hit 123456789, which is a repeat of the first nine numbers, but it's not periodic as the next number doesn't start with 10..., its 123456790
@B3Band
@B3Band 2 жыл бұрын
No shit. That was the point of showing it as an example
@Konchok_Dawa
@Konchok_Dawa 2 жыл бұрын
@@B3Band you don't have to shoot someone down for sharing their thoughts, we're all here to contemplate these things
@Konchok_Dawa
@Konchok_Dawa 2 жыл бұрын
Im not sure if i understand what you mean by 123456789...do you mean for irrational numbers? Bc you can definitely have 123456789 repeat in an infinite decimal, and that *would* be periodic
@suit1337
@suit1337 2 жыл бұрын
​@@Konchok_Dawa no, he means natural numbers (including zero) expressed in decimal form if you write out all decimal numbers in decimal form, you can always add a pattern, that never occured before for example 0123456789 has no repeated pattern you can co on 01231467891011121314151317181920 if you pick a random digit from form the list, it might occur elsewhere - lets say 1, which occurs multiple times locally (like for example stars in the pentrose pattern) you can then extend this pattern by another random digit (before or after) and you are less likely to find this pattern - lets say 12 - we can find den squence 12 multiple times in our list, 2 times to be exact now add another digit, 121 - this is there exactly one time obviously we can extend this sequence by adding all numbers with 3 digits to have a list von 012345678910111213 ... 999 to find, that 121 occurs multiple times now at least at the edge of 12 to 13 like before and obviously when adding 121 so when we add another random digit number to the list, we might not find it in our existing list - like the penrose pattern, when you select your pattern to search big enought, it will be unique
@truestopguardatruestop164
@truestopguardatruestop164 2 жыл бұрын
I just read yesterday Penrose’s Wikipedia page and I wondered what that pattern is, but skipped because I was interested in other things. Hugely interesting!
@reidflemingworldstoughestm1394
@reidflemingworldstoughestm1394 2 жыл бұрын
Interesting things happen to the (4:29) ratio as the grid goes from a 3-grid, to a 4-grid, to a 5-grid, and so on. To see it graphed out, paste this text string 3gaxkag510 into the desmos calculator address bar.
@DaellusKnights
@DaellusKnights Жыл бұрын
Penrose is one of my favorites. I only learned about all this when Derek over at Veritasium did his video on this. BUT! I never knew you could scale it up with additional sets! This is absolutely GOD-TIER because I'm planning to tile my living room with penrose tiles, and you just opened up a whole plethora of new tile designs for me? I made my own based on the pentagon, like Penrose did. Now I have to EXPERIMENT!! THANK YOU!! 😻😍💖👍 Sidenote: previously I knew of penrose via his diagrams related to space-time. So many reasons to be in awe of the dude!
@petersmythe6462
@petersmythe6462 2 жыл бұрын
I asked some people about generating noise by stacking waves together at different angles and they said it would end up repeating. I think this really proves that even with very regular angles, frequencies, and amplitudes, that definitely doesn't happen.
@pirmelephant
@pirmelephant 2 жыл бұрын
Not sure what you mean by angles, but if you want to generate noise, you could do it by overlaying two repeating sound snippets, one with duration 1s and one with sqrt(2)s. This will never repeat because sqrt(2) is irrational. Of course sqrt(2) can't be computed to infinite precision, so it will repeat at some point. But you can delay that point by taking multiple sound snippets where for all durations t_i it is true that t_i/t_j is an irrational number. So for example, 1 s, sqrt(2) s, phi s, pi s etc.
@tonylee1667
@tonylee1667 2 жыл бұрын
@@pirmelephant probably meant different phases
@jhgvvetyjj6589
@jhgvvetyjj6589 2 жыл бұрын
Noise is supposed to have uniform frequency distribution so even if it is not periodic sound it can still have non-uniform frequencies.
@ForTheOmnissiah
@ForTheOmnissiah Жыл бұрын
4:33 the fact that it happened to be the Golden Ratio blew me away. It's awesome that mathematics and science go down some path of research and in the end find something within that is known/discovered.
@Uathankicks
@Uathankicks 2 жыл бұрын
Moorish tilework, that should be pointed out for anyone wanting to learn more. There is also sacred geometry involved beyond the flower of life/golden ratio. In real life the patterns continue across multiple planes(walls and ceilings). It’s incredibly breaktaking to witness in real life. I believe there were other cultures who knew how to create irregular patterns, but the Moors made massive rooms with this stuff.
@arcanine_enjoyer
@arcanine_enjoyer 2 жыл бұрын
I like the background audio, it sounds fitting to the topic of something that never repeats itself
@TGears314
@TGears314 2 жыл бұрын
It’s a wonderful day when minute physics makes a 5+ minute video!
@therealEmpyre
@therealEmpyre 2 жыл бұрын
For quite some time, I have had this hypothesis that maybe a Penrose tiling does repeat, but you have to go so far to find it that it appears that it never repeats. Now, you have shown me why it is impossible for it to repeat.
@punkkap
@punkkap 2 жыл бұрын
Incredible vue work by Mr. Aatish. I will be reading the source of this! Thanks for the video Henry!
@gaprilis
@gaprilis 2 жыл бұрын
Such patterns are not only a mathematical conception but exist in nature, in the materials called quasicrystals, with atoms that never repeat. This discovery awarded a Nobel price to itz finder.
@PvblivsAelivs
@PvblivsAelivs 2 жыл бұрын
I like the darts and kites better. But, the way I have always understood it, given any tiling, you can break the pieces into smaller pieces to create a new tiling or you can build the pieces into larger pieces to make a new tiling. (Well, the tiling might not be new. Some build up into copies of themselves.) But the ratio of the pieces can still be shown to be the golden ratio.
@jameshi4552
@jameshi4552 Жыл бұрын
Too bad they released this video when they did. If they had waited a year they would have been able to ride some of the hype over Einstein tiles being discovered
@alvarobyrne
@alvarobyrne 2 жыл бұрын
not only the video but the references!!!! well done!
@AndyZach
@AndyZach 4 ай бұрын
Like you, this is the first time I've seen a good explanation of Penrose tiling. Thanks for the explanation.
@angelodc1652
@angelodc1652 2 жыл бұрын
Here's my interpretation on why they never repeat 1) Start with 5 wide tiles connected by a corner. 2) Surround the shape with narrow tiles, by filling every 216 angle with 144 angles, making a decagons 3) Surround it completely with wide tiles, alternating between filling 144 angles with two 108 angles, and three 72 angles. 4) Repeat step 2 5) Repeat step 3, filling 252 angles with 2 72 angles, and filling the sets of three 144 angles by putting 3 72 angles in the middle ones. 6) Repeat steps 4 and 5 ad inf. Since Each band of wide tiles is surrounded both inside and out with narrow tiles, the only time when 5 wide tiles get together is in the center.
@irrelevant_noob
@irrelevant_noob Жыл бұрын
But... the bands don't need to be complete... As can be seen at 1:10, there are plenty of "5 wide tiles connected by a corner" shapes in there, it's not just a single one in the whole plane. 🤔
@1harlo
@1harlo 2 ай бұрын
thank you for explaining that when I see a pattern and someone says “there’s no pattern to this mathematically” that there actually is and we’re not crazy
@hankcohen3419
@hankcohen3419 2 жыл бұрын
Thank you! Super cool. I've been interested in Penrose tilings for some time but never knew the underlying structure. I want to use them for marquetry patterns. Now the Pattern Collider gives me a lot more options.
@user49917
@user49917 3 ай бұрын
I have used your grid logic in a very interesting way. This has been eye-opening. Thanks for this insight.
@LeoStaley
@LeoStaley Жыл бұрын
Please do one on the newly discovered a periodic monotile
@platypi_otbs
@platypi_otbs 2 жыл бұрын
I already knew about this, but I enjoyed the way this video presented it.
@slash196
@slash196 2 жыл бұрын
Penrose tiling touches on so many fundamental questions of life, beauty, and meaning, that it's kind of incredible.
@grandexandi
@grandexandi Жыл бұрын
Oh my god, content like this is what makes the internet great!
@johanngambolputty5351
@johanngambolputty5351 2 жыл бұрын
Damn, I have been playing with minesweeper on voronoi tilings, but using penrose tiling might actually be much better :) I need to try to generate some now
@nahometesfay1112
@nahometesfay1112 2 жыл бұрын
Where can I try that? It sounds so cool!
@johanngambolputty5351
@johanngambolputty5351 2 жыл бұрын
@@nahometesfay1112 I tried linking once or twice, but I think youtube removed it. Anyway I've put it on itch, its TileGame by JohannGambolputty, may not appear in search right now though...
@walterwatson120
@walterwatson120 2 жыл бұрын
...and the reason a square tiling repeats is because their tiling would be sine of 90°, which is 1. That makes sense! Thanks, minute physics!
@ferminleon
@ferminleon 2 жыл бұрын
I thought the music was going wild on this one, then saw it was algorithmically generated, fun stuff.
@ferminleon
@ferminleon 2 жыл бұрын
@Artem Down Well, the result to me is definitely musical, but just wonky enough to grab my attention
@olorin4317
@olorin4317 2 жыл бұрын
I have almost no idea what's going on, but this still has to be one of the best ads I've ever seen.
@op4000exe
@op4000exe 2 жыл бұрын
Dunno if it's just me, but the music in the background is just a little too loud for me to properly hear what you're saying without trying too hard. I do however get that it's essentially an example of a non-repeating pattern which is very similar, but I don't know if the video would come across a little better if there was a bit larger difference in how loud your voice and the music is. Though I suppose people might be less likely to notice the music being different if it was the same, but oh well. Great video nonetheless! Edit: Spaced out the statement a little to make it easier to read.
@rupert7565
@rupert7565 2 жыл бұрын
Agreed. The music is a little to loud here.
@ben_burnes
@ben_burnes 2 жыл бұрын
I agree too, the music was really obnoxious in this one. Still a super cool video, just... that music isn't a good fit.
@KatyaAbc575
@KatyaAbc575 2 жыл бұрын
I didnt even notice there was music in the background. I guess different people have different perception.
@AaronOfMpls
@AaronOfMpls 2 жыл бұрын
It was fine for me; I didn't really notice it much. ...And hmm, I'll have to go back and listen again, to check if the music is quasi-periodic itself. 🙂
@murmurmerman
@murmurmerman 2 жыл бұрын
I'm a musician and tend to fixate on musical elements... and I barely noticed the music. Maybe the balance got changed in the 16 hours since your comment got posted?
@threemooseqateers9689
@threemooseqateers9689 2 жыл бұрын
I have a question I was hoping you could answer. Due to special relativity, if I were to somehow escape the effects of the movement of the galaxy and everything in it, reducing my velocity and the effect of gravity on me to zero, how would I perceive time? Would it stop? Would it travel only slightly slower? If I were to travel to a planet that moved slower relative to Earth, would I experience time differently, and by how much?
@josh34578
@josh34578 2 жыл бұрын
What would the resulting tiling look like if you only used 3 of the 5 sets of parallel lines in the pentagrid?
@frojojo5717
@frojojo5717 2 жыл бұрын
Gaps in your tiling?
@AThousandSunsinphysics
@AThousandSunsinphysics 2 жыл бұрын
Typing something to find the answer
@CarpetOfStars_98
@CarpetOfStars_98 2 жыл бұрын
Then it wouldn't be a pentagrid anymore, wouldn't it? It would be a grid made of 3 sets of parallel lines, like a triangular grid. But how would the tiling look like?
@jty9631
@jty9631 9 ай бұрын
I like shirts with patterns, and I think these penrose patterns would look pretty dope.
@nodroGnotlrahC
@nodroGnotlrahC 2 жыл бұрын
Fascinated by the algorithmically generated music, because it bears some resemblances to pieces I have made - (see "Notes From The Analytical Engine" by Beat Frequency on Bandcamp) - please can you post some details about the algorithm.
@theimmux3034
@theimmux3034 Жыл бұрын
friendship ended with the penrose tiling, my new best friend is the hat tiling
@studio48nl
@studio48nl Жыл бұрын
Subject needs a new video, now the 'einstein' has been found 😄
@RazzyRyan
@RazzyRyan 9 ай бұрын
I'm redecorating my bathroom soon, and I feel inspired
@cookingforsingles
@cookingforsingles 2 жыл бұрын
Super fascinating! I really like this video! It reminds me of my days studying computer graphics!
@DomyTheMad420
@DomyTheMad420 2 жыл бұрын
ykno my absolute favorite math thing? When we look at something that's infinite and find a (godamned) way of expressing it in math. "it may go on further then we have time to check, but i can PROVE that this bit of math predicts it perfectly."
@LeopardMask12
@LeopardMask12 8 ай бұрын
Anyone else see the lower left pattern at 5:33 and think it gives vibes of a Kurzgesagt background? Maybe it's just the color choices, idk.
@N54MyBeloved
@N54MyBeloved 3 ай бұрын
It's the color palette lol
@xjdfghashzkj
@xjdfghashzkj Жыл бұрын
BRB gonna draw up a Penrose-crawl for my next D&D session
@wizardinthenorthable
@wizardinthenorthable Жыл бұрын
Who knew someone would discover an einstein just a few months after this video. Maybe good content for a short? Hats and turtle tiles can do it with a single shape.
@NonTwinBrothers
@NonTwinBrothers Жыл бұрын
And now even a single shape w/o reflections :D
@Hardrock1a
@Hardrock1a Жыл бұрын
Remember when this was the ultimate in tiling? Now they have found “the hat”, “the specter”.
@Stevobulfer
@Stevobulfer 2 жыл бұрын
Hey, was the background music also quasi periodic?? Nice touch! I love it!!
@nataliafidan4222
@nataliafidan4222 Жыл бұрын
This channel is educating me Who's smol 10 years using mamas account And it's insane so thank you!
@thwok59
@thwok59 2 жыл бұрын
1:25 why does it look like kursgesagt background
@hummingfrog
@hummingfrog 2 жыл бұрын
Two questions: 1) How many ways are there to tile an infinite plane using Penrose tiles? (Intuitively it seems like the answer would have to be either one, two, or infinity, but who knows). 2) Does a Penrose tiled plane have a "center". By this I mean a point about which it has five-fold rotational symmetry. I ask because when I casually looked at Penrose tiles a while back it seemed like the most natural way to start tiling was by making a 5 point star using the wide tiles (or a 10 point star using the narrow tiles), and then building out in all directions in a symmetrical way, which would imply that a 72 degree rotation would map the tiling onto itself. So am I talking nonsense, or can a Penrose tiling have rotational (as opposed to translational) symmetry?
@murmurmerman
@murmurmerman 2 жыл бұрын
1) There are infinite ways, but no way to tell any of them apart from a finite patch (i forget the reference, but google around and you will eventually find a paper which proves this) 2) They could have rotational symmetry, but AFAIK it's not a necessary condition. For example, take a pentagrid with rotational symmetry, and shift one of the grids by 1/3 of the unit width. This will break the symmetry at the old rotational center, but since the shift is not a linear combination of 1 and phi, it should prevent the pattern from shifting to any new rotational center. That is, assuming this musician-turned-high-school-math-teacher has understood things correctly... If any professional mathematicians out there would like to contradict my intuition, I'd willingly concede, and be happy to learn something.
@GODDAMNLETMEJOIN
@GODDAMNLETMEJOIN 2 жыл бұрын
If I recall there aren't just infinite Penrose grids, but uncountably infinite.
@lawrencedoliveiro9104
@lawrencedoliveiro9104 Жыл бұрын
@@GODDAMNLETMEJOIN Would that mean that all except 0% of them are incomputable?
@Livi_Noelle
@Livi_Noelle 2 жыл бұрын
Fun fact; after massive oral surgery I had Penrose drains that ran from my mouth, through the empty tooth sockets and out through my chin/neck, where I still have a very ugly scar. I almost died because I ignored a cracked tooth for a few years. In the course of 4 days, shit went from mild toothache to, "oh God, I can't swallow anymore and my throat is starting to swell shut. Take care of your teeth.
@sarajamal799
@sarajamal799 Жыл бұрын
Wow! I was thinking about these patterns the other day! thank you for these amazing videos!
@PatrickStaight
@PatrickStaight 2 жыл бұрын
In the demo, when the "pattern" perimeter is set to zero or one, some of the intersections double up and you get tiles that are not traditional Penrose kites or darts. Is this a degenerate case or are there classes of quasiperiodic systems with recurring non-rhombus elements?
@brianarsuaga5008
@brianarsuaga5008 Жыл бұрын
I will absolutely accept more minute-physics-math videos.
@Gabrielrandom-l6y
@Gabrielrandom-l6y 3 ай бұрын
so... where are the RIN tilings?
@wizardsuth
@wizardsuth 2 жыл бұрын
I've read that there are an infinite number of unique Penrose tilings. Any finite area of any of them is repeated an infinite number of times on all of them. As a result, it is impossible to distinguish any one of them from any other by comparing finite areas of them. They are only unique when the entire infinite plane is considered. Rather like the digits of irrational numbers,
@anteeklund4159
@anteeklund4159 2 жыл бұрын
Oh I would love to have a penrose pattern on a t shirt!
@2DXYSU
@2DXYSU Жыл бұрын
Great stuff. But I especially appreciate it when I discover one of the diminishing number of people who know the difference between fewer and less.
@Cici_Silo
@Cici_Silo Жыл бұрын
Couldn't focus on the descriptive dialog because of the DAMN music!
@IgorSilva-id9rb
@IgorSilva-id9rb Жыл бұрын
Yup, it does not help.
@lilabluestars85
@lilabluestars85 Жыл бұрын
I didn't even know about Penrose tiles, but this video explains it beautifully! Thank you 🙂
@torazis3286
@torazis3286 2 жыл бұрын
The first thing I thought of when you said they never repeat were irrational numbers
@eliotvanvalkenburg5155
@eliotvanvalkenburg5155 2 жыл бұрын
I wrote my undergraduate math thesis on the penrose tilings and one of the first things I say to describe what the tilings are is "it's a two dimensional analogue to the never-repeating structure of an irrational number". It's really just a version of the golden ratio with an added dimension :)
@sabinrawr
@sabinrawr 2 жыл бұрын
I was following along pretty well and all was good. Then, out of nowhere, phi appeared. Suddenly, the world made sense.
@TommyLikeTom
@TommyLikeTom 2 жыл бұрын
I discovered penrose tiling independently before learning about it at age 21. It's easy to see how non-repeating patterns work, you just need to understand indivisibility.Honestly what got me thinking about this in the first place was Venus and the pentagram symbol and how they represent beauty.
@JellyMonster1
@JellyMonster1 Жыл бұрын
This is one of the best videos I have ever seen. Brilliant!
@LeoStaley
@LeoStaley Жыл бұрын
If you liked this, you'll love veritasium's video on the Penrose tiles.
@kelvinelrick807
@kelvinelrick807 2 жыл бұрын
Hey Henry, can you do a collab with the Torque test channel and help them solve some of their questions on mass and kinetic energy with how impacts guns are affected by weighted sockets? Here's their video, their questions are in the last quarter of the video: kzbin.info/www/bejne/lZXKopxtnd1rnJo Though the rest of the video is pretty interesting to watch.
@bhayes409
@bhayes409 2 жыл бұрын
One can jump back a couple steps as well. For any collection of lines in the plane -- not just a grid -- the intersections define a set of tiles. [Well, you have to be careful about points where more than 2 lines cross and stuff, but ..] When the collection of lines is finite, this is a patch of tiles. When the collection of lines is infinite, there's a tiling of the plane. But if it's just a helter-skelter collection of lines, there won't be symmetry. By using collections of parallel lines, nice symmetries emerge.
@hugobouma
@hugobouma 2 жыл бұрын
If the lines are truly random, the chance of more than two of them exactly intersecting at a point is 0.
@timothytosser288
@timothytosser288 11 ай бұрын
Signalis
@kevinotalvares
@kevinotalvares 2 жыл бұрын
Wow the visuals were amazing!
@YuraSuper2048
@YuraSuper2048 Жыл бұрын
rin penrose tiles
@FourthRoot
@FourthRoot 2 ай бұрын
The interesting thing is that any subset of this tiling, no matter ho larger, actually occurs an infinite number of times, just not at regular spacing.
@krautergarten4529
@krautergarten4529 Жыл бұрын
They just found the holy grail of penrose tileing, with only single tile. A Hobbyist Just Solved a 50-Year-Old Math Problem (Einstein Tile) / Up and Atom kzbin.info/www/bejne/d2KlmYKMjJ2kkLc
@JNCressey
@JNCressey 2 жыл бұрын
if I start with the regular square tessellation tiling, then replace one square with an arbitrary asymmetrical design, I also get a tiling that doesn't have global translational symmetry.
@OmriLeshem
@OmriLeshem 2 жыл бұрын
is the cancer music in the background is also quasi-periodic?
@mortimerlojka5912
@mortimerlojka5912 2 жыл бұрын
Wow... By far, the best and most brain-melting video I've seen in ages... !!
@GuilhermeBortol
@GuilhermeBortol 2 жыл бұрын
If it doesn’t repeat itself, can we call it a pattern?
@God-ld6ll
@God-ld6ll 2 жыл бұрын
its an anomaly. Scp foundation, where are you?
@---WilloW---
@---WilloW--- 2 жыл бұрын
You know it will never repeat, that's predictable... that's the pattern
@incendiary6243
@incendiary6243 2 жыл бұрын
10110111... It never repeats, but the pattern is very clearly just add another consecutive one to the prior sequence of ones and put a zero in between. You're doing the same thing every single iteration, its just that one component of what you do changes
@wqferr
@wqferr 2 жыл бұрын
I understand and appreciate the point of the music in this video, but... being completely honest it was too distracting, even annoying at times.
@dntfrthreapr
@dntfrthreapr Жыл бұрын
The rationality of this blows my mind!
@adhyayanchoudha1055
@adhyayanchoudha1055 Жыл бұрын
0:42 oh god no the Penrose tiles are going to summon the devil
@Aphoboth
@Aphoboth 4 ай бұрын
I firmly believe there was at least one man who understood this but had trouble explaining it, and he was committed to a mental institution.
@EGarrett01
@EGarrett01 2 жыл бұрын
0:11 So the real trick is semantics. Got it.
@CatFish107
@CatFish107 2 жыл бұрын
*Keanu voice* whoa. Thanks for this and the link. Going to look into ways of adapting these geometries into rhythms. Similar, yet endlessly changing patterns is the feeling I want to put in my sounds.
@joyous18
@joyous18 2 жыл бұрын
This Reassembly player believes in Red supremacy
The No Cloning Theorem
10:04
minutephysics
Рет қаралды 2,4 МЛН
How a Hobbyist Solved a 50-Year-Old Math Problem (Einstein Tile)
17:59
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 158 МЛН
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН
The Infinite Pattern That Never Repeats
21:12
Veritasium
Рет қаралды 20 МЛН
A Better Way To Picture Atoms
5:35
minutephysics
Рет қаралды 4,9 МЛН
We Fell For The Oldest Lie On The Internet
13:08
Kurzgesagt – In a Nutshell
Рет қаралды 5 МЛН
How to Teleport Schrödinger's Cat
14:13
minutephysics
Рет қаралды 2,6 МЛН
Discovery of the Aperiodic Monotile - Numberphile
31:04
Numberphile
Рет қаралды 202 М.
I never understood why you can't go faster than light - until now!
16:40
FloatHeadPhysics
Рет қаралды 4,8 МЛН
The Unreasonable Efficiency of Black Holes
6:22
minutephysics
Рет қаралды 4,1 МЛН
How are holograms possible? | Optics puzzles 5
46:24
3Blue1Brown
Рет қаралды 1,4 МЛН
General Relativity Explained in 7 Levels of Difficulty
6:09
minutephysics
Рет қаралды 1,6 МЛН
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН