thanks dude. you kinda helped. im so so so so +...+ so +1 screwed for my math 114 test tomorrow.
@patricknazar Жыл бұрын
Very helpful, you're a really good teacher
@malleharana83269 жыл бұрын
You are a great teacher
@frosturation24742 жыл бұрын
wow thanks! i thought this would be very hard..
@chandlerc59319 жыл бұрын
what kind of class is this?
@mathlegendno123 жыл бұрын
Calc
@venusjames46618 жыл бұрын
u r great...
@THEMATT2223 жыл бұрын
Noice 👍
@nalingoel69713 жыл бұрын
Wait!! I remember seeing you in some other comment section! What are the odds?!
@THEMATT2223 жыл бұрын
@@nalingoel6971 Idk, lol. Probably 1 in a several million. Considering there are around 30 billion videos on KZbin and most of my comments don't gain enough likes to get exposed to more than a few people, even if I comment a lot, the chances are very very low.
@nalingoel69713 жыл бұрын
@@THEMATT222 You may not remember but we actually talked about Reddit lol.
@THEMATT2223 жыл бұрын
@@nalingoel6971 Hmmmm, in which video did we talk in? Should we add each other on Reddit or something?
@nalingoel69713 жыл бұрын
@@THEMATT222 I don't remember which video; I am not on Reddit anymore
@Carlosk126 жыл бұрын
5:20 wait a minute aren't you supossed to plug h in an then you get 0/0
@ineshmukherjee83384 жыл бұрын
l'hopital's rule would have to be used so u take d/dx of the top and bottom to get 0/1 = 0
@justinvance92213 жыл бұрын
Since h isn’t actually 0, just approaching 0, you can evaluate 0/h before applying the limit. You do not have to apply L’Hopital.
@nalingoel69713 жыл бұрын
Imagine that h is just slightly above zero, then the answer will be zero, therefore you can imagine as to why the limit is 0.
@nalingoel69713 жыл бұрын
The whole purpose of the limit is that h is never equal to 0, just very close to 0
@tonyanderson51233 ай бұрын
You cannot use the formula for d(x^n)/dx = nX^(n-1) to prove itself!!!
@wujiajia53148 жыл бұрын
How about nth derivative for (2x+1)^-1
@AlchemistOfNirnroot6 жыл бұрын
I suppose you could use Leibnitz's theorem of nth product derivative if u=1 and v=f(x); but I haven't done the calculation.