One of the best things about the age we live in is that we all have FREE access to amazing lectures like these from MIT, no matter where we are
@w3w3w33 жыл бұрын
agreed lol.
@ajarivas723 жыл бұрын
@@w3w3w3 Specially during the pandemia and lockdown.
@pseudotatsuya2 жыл бұрын
And we recognize that watching videos of lectures is meaningless for most people.
@texasdrz95152 жыл бұрын
we know
@wyqtor2 жыл бұрын
And one of the worst things about the age we live in is that we have to spend 8-9 hours a day in front of a computer screen wasting our lives on menial corporate tasks instead of watching lectures like these and applying what we learned from them to do something really meaningful.
@leixun4 жыл бұрын
*My takeaways:* 1. Prerequisites for MIT 6.0002 2:16 2. What is a computation model 4:17 3. Optimization models 5:47 - Knapsack problem 8:04 - Solutions of knapsack problem: brute force algorithm 16:18, greedy algorithm 19:38 and problem with greedy algorithm 37:05
@vegitoblue214 жыл бұрын
thanks a lot, it's really helped me
@morenoananto15744 жыл бұрын
@@vegitoblue21 nice GH Z 👍
@leixun4 жыл бұрын
GH Z you’re welcome
@randomrom747 Жыл бұрын
W, need more comments like these
@smartdatalearning33123 жыл бұрын
Professor Guttag gives simple and well understandable explanations for otherwise actually pretty complex optimization problems (especially digital optimization). It is so nice that MIT is making these lectures public
@metaloper3 жыл бұрын
For anyone interested, this course starts in march 2021 in EDx. It's free with an optional certificate for $75.
@aerafine2 жыл бұрын
I am amazed that these courses are freely available. Thank you, MIT!
@samtj35242 жыл бұрын
Personal Notes. 1. Keyfunction serves to map elements (items) into numbers. Tells us what we mean by best. In this case, the professor wishes to use the one algorithm independently of his definition of best. 2. Lambda function creates anonymous functions (a great one for one-liners) by taking an input of parameters and then executes the ONE expression. (lambda : [expression]) 3. Greedy algorithms can't really bring you an optimal solution. Different approaches to greedy tests: greedy by profit/value (selects the biggest value first), greedy by cost (selects the ones with minimal cost in hopes of obtaining as much items as possible), and finally greedy by density (selects the one with the biggest value per cost)
@AceOnBase18 ай бұрын
I'm working on an MS in data science, and man do I wish I had this guy. My professors over complicate everything.
@raticante6 жыл бұрын
thank you so much mit, I am a colombian student and without you I wouldn't be able to take this kind of courses
@notagain37322 жыл бұрын
Imagination expansion is the single most valuable skill to learn that can assist further learning in the future . This imagination comes in forms like mind palace aka the Art of memory , maybe (Learn how to Learn ) ... This lecture made me think about why i became interested in Machine learning and made the path seem less intimidating , which makes me glad that i found this lecture playlist and youtube channel
@agir47075 жыл бұрын
This Course is gold. This quality does not exist anywhere else. I read the book, watched all the videos, solve the priogramming assignments. Thanks MIT and Professor Guttag! You can find assignment solutions for 6.0001 and 6.0002 on my github account: github.com/emtsdmr
@chaitanyav53204 жыл бұрын
Hey, do we get a certificate on completion? Just curious.
@VV-xt7fj4 жыл бұрын
Hey I'm having hard time completing the last problem set. Can you please help me?
@şirinn21 Жыл бұрын
İt is so nice that MIT is making these lectures public 🎉
@anarelle9 ай бұрын
What a brilliant lecture and a amazing professor. He reminded me of what a pleasure it is to attend university.
@studywithjosh51094 жыл бұрын
Just finished 6.0001. If you want to go through 6.0002 with me im starting today!
@naruto-49907 жыл бұрын
Thank You MIT
@bihireboris34076 жыл бұрын
same bro lmao, i apologize for my broke ass
@newb_embedded0406 жыл бұрын
yeah , same goal
@gert-janroodehal73685 жыл бұрын
Now you have money, so donate already
@czacknaz5 жыл бұрын
donate bro
@europebasedvlogs12514 жыл бұрын
Now its time
@domsjuk3 жыл бұрын
The fact that his name basically 'means' "goodday" in German and "abdominal label" in English cheers me up for some reason.
@alute5532 Жыл бұрын
How optimization works? 6:08 I. E. Route by car from a to b Objective to min travel time So objective function = sum( mins spent) from a to b On top of that layer a set of constraints(default empty) Fast way Boston by plane but impossible on a 100 budget Timw: to be before 5 pm While bus only 15 but impossible before 5, infer better to drive Constraints help elimination some solutions This asymmetry is handled differently Knapsack a burglar with limited space, items more than he takes 11:00 contonus problems solved by greedy algorithm takes best, nice on 0 1 knapsack: decision affects other decisions I could end up multiple solution 1300 or 1450, greedy does not guarantee best answer Assume n items: 0. Total max w 1. Set available l 2. V item is taken 16:30 bruteforce algorithm Generate all subsets (of items) From a powerset 23:31 Key function used to sort the items (based on. Some criteria Take item subtract calories Next time best time found out (but can't leave yet) 🤔 If an item makes it overbudget "wait and see" check others, then Algorithm efficiency? Python built in timsort Same as quicksort= same as mergesort n log n N (len items) N log b + n (constant) Order n (log n) Door for large number (1M) Not for cost but cheap ones first We get different answers with greedy Only local optimal solutions chosen each point Hey stuck local points boy the best one
@oluwadaraadepoju58323 жыл бұрын
Hyperparameters tuning is making so much sense now!. Thank you so much for this.
@geekyprogrammer48313 жыл бұрын
how???
@ru2979Ай бұрын
wots that ?
@JanekBogucki21 күн бұрын
34:46: The names array has 9 items while values and calories have 8 leaving cake with no calories - a dream scenario for some!
@ernestocasco14254 жыл бұрын
Anyone here because of the damn quarantine?
@jothiramesh42124 жыл бұрын
i suppose you are optimizing your time
@mousilkich4 жыл бұрын
I don't even know how I got here lol
@examango4 жыл бұрын
Maybe want to become bald.
@marco.nascimento5 жыл бұрын
Great lecture. Really looking forward to dive into this second part of the course, thank you MIT for uploading those
@carlosfonseca1437 жыл бұрын
Great content, teacher and course. Thank you so much for uploading this course.
@adamrubinson68756 жыл бұрын
A good example of the global vs local optimum is: Problem: consider vals = {1/2, 1,3, 1,4}, and then find the subset of values in vals such that the sum of values in this subset is as large as possible, but is also constrained to be 5/8. However, not confined to taking this greedy algorithm, you can see that 1/3 + 1/4 = 7/12, which is less than 5/8, but better than our greedy alg result of 1/2. So therefore the point is that greedy algorithms give you different results to the knapsack problem depending on what your metric is (our greedy metric here was 'next largest', but we could have chosen something else. In fact, 'next smallest', would have gotten us the global optimum solution!). "local optimum" in this context refers to the optimal solution *for a given metric* ('next largest' - which yielded our result of 1/2), which as mentioned, isn't necessarily the same as the best possible global solution (our result of 7/12) to a knapsack (optimisation) problem.
@duanas64092 жыл бұрын
Thank you! I was confused that he was describing a local optimum with those examples because the metrics he is using are qualitatively different, ie. it might be more desirable to me to have slightly less overall calories but me maximising on "value" (how much I like the food) rather than cost. What seems significant for determining the optimum is the _order_ of the elements, and the metric (or the key function) determines the order. So then the global optimum is the solution with biggest total across all orderings.
@sandip.bantawa7 жыл бұрын
If you are confused when Wednesday is, yes it is 2. Optimization Problems on autoplay
@bengbeng20056 жыл бұрын
this is the best teacher ,i realized that most of mit teacher are great wish i could study there
@bharathsf3 жыл бұрын
I just have two words: Thank You
@mrocpnable7 жыл бұрын
Great content and teacher. A little remark in the code: names values and calories are not of same length. names is 9 and cake is indeed excluded
@EranM6 жыл бұрын
31:40 The moment the professor discovers that no one understood anything.
@masteronepiece65596 жыл бұрын
Because he is teaching the wrong folk.
@SeEyMoReBuTtS6 жыл бұрын
Jesus that was so cringe
@Cashman91116 жыл бұрын
@dothemathright 1111 that is so true, haha
@ramind100015 жыл бұрын
dothemathright 1111 by this definition no person at time t will understand lambda functions unless they know it, and If we let t = 0, no one understands lambdas, and there fore no one will ever be able to understand lambdas and therefore lambdas become useless
@maxwellzen43095 жыл бұрын
@@ramind10001 It's almost as if he was joking ...
@europebasedvlogs12514 жыл бұрын
4:10 Start
@AmanSingh-yj4ul Жыл бұрын
6:14 here should it not be objective value than a function? What am I missing? Minimum time would be a value right?
@богданбонан-х2ч Жыл бұрын
it feels funny to hear absolute silence in response to some questions, the way that even MIT students dont know or are afraid of answering wrong
@Grassmpl7 жыл бұрын
The 'no good solution' statement for 0/1 knapsack problem is true if we assume P not = NP
@kirkrussellGod5 жыл бұрын
Easy introduction; Using human mind as an example for understanding of how mental congnition takes place in logic sets, to more logic sets, taken into relativity to personal information that is believed from the correlation of past believed information that foundationally supports anything believed by that individual to be true. *Because, beliefs equal what we deem to be real (more on that later). For example, Artificial Intelligence is computationally created (unintentionally), but found to be necessary based upon exposure to beliefs or purposely created by the creators (humans) without knowledge of the methods that are being used for an outsider source of creation. This is the greatest factor of creation. It is statistically possible to re-create what has been proven and even possible to prove that nothing is random in the event that it be understands the mirrored language in which it comparatively recognizes as belonging to a "concious" observation of some outcome. If the created language is is newly acquired and uknown, then no phenemonela is observed for validate its existence. Therefore, no new DATA is confirmed and a moment for observational phenomena was lost (some call this luck). In the event that new. Infornation is realized and then it turns into data due to concious observation then it will be consciously compared to what is known in some context that cognitively gives validation to a past experience that has been deemed factual and correct, therefore creating a sense of beliefs. *If the Universe offers assistance to the creation of other Universes and its nature is to produce systems that are in mirrored in reproduction then it would seem relative. Some of these observations would be similiar, metaphor like, opposite of, symbolically important or whatever is conciously observed and to be factual or possibly thought of and believed to somehow shaped or formed the connected understandings of the unique observer. We could jump into many acdemic subject matters and show how concious creation through cross sourcing one subject matter to the nex subject matter and to helps to identify the creation of anything, because everything is a "system" persay...
@danielli92242 жыл бұрын
I love this guy! Man literally threw out candy to encourage students to answer questions, that’s so cute lol
@pottanatgeorge5 жыл бұрын
Wish I could attend in person. Great lecture, just sad not enough interaction.
@primorock81413 жыл бұрын
I can't believe this is for free
@diegolainfiesta6 жыл бұрын
the length of the list of names is 9, but the length of the list of values and calories is 8. Therefore, no value or calorie is asigned to the cake. But the lecture is really great...minor mistake...
@idocoding2003 Жыл бұрын
Woahh, nice video. Didnt expect to use knapsack algo in data science... We learnt it in design and analysis of algorithms.... Interesting idea.. i got a idea.. maybe i can do something innovative 🤔 By the way love from India
@mariammohamed1767 жыл бұрын
[36:00] I don't get why we get different answers in the greedy algorithms as long as we use the same items and the same key function It does local optimization, but it does not mean that local optimization is different each time we run the program given the same parameters
@tydical3 жыл бұрын
It is such a shame that this video has 287K views and the last video has only 20K views, why do people don't complete the course?
@raymac62625 жыл бұрын
What a personable prof!
@Candyapplebone4 жыл бұрын
This John Guttag guy, I like his style
@anhtuan171 Жыл бұрын
I code excactly like in the video but when i run it, the error name “Food” is not defined in line 17 (build menu) appear. Does anyone has any ideas ?😢
@adiflorense14774 жыл бұрын
36:06 Do you mean calories as weight, sir?
@shanefitzgerald93396 жыл бұрын
Fantastic course, thank you to MIT, like many here I will donate when I start earning!
@ranjanasaiyam5834 Жыл бұрын
he is legend ,great explainer
@thienkyvotruong5961 Жыл бұрын
Thank you MIT
@existenence4 жыл бұрын
Timsort is a variant of Quick Sort? AND QS has worst case complexity similar to merge sort?? I guess I don't understand Computational Complexity that well :(
@amyfalconer16606 жыл бұрын
What a cliffhanger to end on! :)
@mohamedtarek85147 жыл бұрын
28:42 what is "item" that used for ?
@vishnutilak29707 жыл бұрын
'List' of Food items or Menu
@praveenkumarmahto32047 жыл бұрын
I Love the way they teach us .....Awesome I have great experience .....#Great Content and Also Valuable ......
@jerrywuification7 жыл бұрын
Where did the I[i] come from? Shouldn't it be L[i]?
@randiaz956 жыл бұрын
He didnt define it in the beginning as a list but it is the list of item values and weights.
@Simba-mr1je2 жыл бұрын
This Parachute is a knapsack! XD
@swaggihomi4 жыл бұрын
Are the numbers inside the 'values' array randomly picked by the instructor or the does it act as a grading scale for each menu item?
@duanas64092 жыл бұрын
I think they are a grading scale he has chosen to order the items according to how much value they have to him (how much he likes them).
@filippodembech76592 жыл бұрын
Which book is used for this course and how I can exercise on the different topics concerned the course? If there are any...
@mitocw2 жыл бұрын
The textbook is Guttag, John. Introduction to Computation and Programming Using Python: With Application to Understanding Data. 2nd ed. MIT Press, 2016. ISBN: 9780262529624. It is available both in hard copy and as an e-book. (mitpress.mit.edu/9780262529624). The course materials are available on MIT OpenCourseWare at: ocw.mit.edu/6-0002F16. Best wishes on your studies!
@aaditreejaisswal6344 жыл бұрын
Is there a specific order in which I should watch the different playlists for ML?
@sharan99933 жыл бұрын
Yes depends on wt u want to learn?
@ArunKumar-yb2jn3 жыл бұрын
Professor knows to solve complex optimization problems but don't know what to do when the screen freezes. Calls the assistant.
@quanquoctruong12767 ай бұрын
32:14 i feel so bad for the prof... he's trying so hard to build a connection with his students...
@youvanced65933 жыл бұрын
What about a genetic tournament algorithm?
@xenofongiannoulis87685 жыл бұрын
this food rewards reminds me my relationship with my dog. :) Anyhow, good explanation and overall definition of such concepts!
@你问我滋不滋磁我说滋3 жыл бұрын
36:48 donut should have 95 in calories instead of 195 showing in the result, and apple should be 150, not 95.
@Friendsshare6 жыл бұрын
LOLLLL I love when no one can answer his questions. Omg, I feel so bad for that professor.
@McAwesomeReaper Жыл бұрын
Thanks for the assist Ana (heart emoji)
@wengexu91777 жыл бұрын
Just finished the exam of this... What if this uploaded few months ago...
@donlansdonlans33635 жыл бұрын
What are the prerequesites of this course?
@mitocw5 жыл бұрын
6.0001 Introduction to Computer Science and Programming in Python is the prerequisite for the course. See the course (and the prerequisite) on MIT OpenCourseWare at: ocw.mit.edu/6-0002F16. Best wishes on your studies!
@amatris2 жыл бұрын
32:31 really no one can answer !!
@abstractguy95 жыл бұрын
Dr. Anna Bell from 6.0001 pops out in this video... Did any of you guys notice???
@dexternierva65034 жыл бұрын
35:18
@adiflorense14774 жыл бұрын
27:11 so n = len (item) has a computation time of O (n log n) huh? I just understand now. thank you sir
@pfever3 жыл бұрын
No, "itemsCopy = sorted(itmes, key = keyFunction, reverse = True)" has a complexity of O(nlogn) as the fastest sorting algorithm has that complexity. by "n = len(items)" the professor means that in O(nlogn) n is equal to the number of items we have to sort.
@jinruifoo70874 жыл бұрын
why are there 9 names and only 8 values and claoires
@ArunKumar-yb2jn3 жыл бұрын
I think it's a minor mistake. You have to omit cake.
@veggeata12017 жыл бұрын
Quicksort worst case is O(n^2). The professor probably wanted to say average case complexity.
@m4ng4n7 жыл бұрын
It probably was a white lie, having to explain the actual difference between average and worse case time complexity would drive people's attention away from the actual problem imo. Would've been better if he just used mergeSort which the students already knew tho
@mrvargarobert7 жыл бұрын
Maybe he was saying worst case for Timsort is O(n log(n)). en.wikipedia.org/wiki/Timsort
@sailormoonfan37657 жыл бұрын
But timsort is not a quicksort, it is more like a mergesort.
@waynelast1685 Жыл бұрын
Thank you for these lectures. If I come into money I will make a large donation.
La Casa De Papel knows the 0/1 knapsack problems omg!
@axa35474 жыл бұрын
so i have learned machine learning ,python,sql,tableue,powerbi,flask in 10months thanks to corona ugggh
@ArunKumar-yb2jn3 жыл бұрын
what have you put to practise?
@axa35473 жыл бұрын
@@ArunKumar-yb2jn got job in business analyst role
@ArunKumar-yb2jn3 жыл бұрын
@@axa3547 What's a business analyst do? Work with Excel or coding?
@axa35473 жыл бұрын
@@ArunKumar-yb2jn depends upon you which ever tool you wanna use , I use both
@GemZbabe1013 жыл бұрын
Did you get the job without a diploma in those, simply by skill?
@rohansinha64543 жыл бұрын
This is amazing
@shakesmctremens1787 жыл бұрын
Boy, talk about your cliffhangers.
@physics82757 жыл бұрын
Excelente, ¿podrían igualmente subir vídeos de física y matemáticas con subtítulos en español o traducidos al español? Gracias.
@juancarloscatuntachoquecal76082 жыл бұрын
@Nicolás Gómez Aragón roflmao, i got it.
@pfever Жыл бұрын
Aprende inglés
@ehza6 жыл бұрын
Thank You
@Divyasridevotinal4 жыл бұрын
👍Gud morning gud video
@许冠泽7 жыл бұрын
error?
@nathanroberson7 жыл бұрын
Thank you I enjoyed it
@nermienkhalifa59976 жыл бұрын
thanks
@Letslearntogetheruzh74 ай бұрын
0:23
@quocvu9847 Жыл бұрын
26:30
@haruhishi58085 жыл бұрын
Thank you from Algeria
@tarundumka58727 жыл бұрын
thank uu mit ocw
@nguyenchau61104 жыл бұрын
What programming classes should I take before learning this course? Thanks
@mitocw4 жыл бұрын
The Syllabus lists the Prerequisites as "6.0001 Introduction to Computer Science and Programming in Python or permission of instructor." See the course on MIT OpenCourseWare for more info at: ocw.mit.edu/6-0002F16. Best wishes on your studies!
@sushio4357 Жыл бұрын
@@mitocw doesn't cover the math perequisites
@jesus15194 жыл бұрын
Great!
@abderrahimelgomri16265 жыл бұрын
I could have got the candy reward it was so obvious that the answer is Food .
@swaggihomi4 жыл бұрын
One more question: Why is density function returns self.getValue() / self.getCost()
@DjoumyDjoums4 жыл бұрын
value / cost gives you how much value is packed into 1 unit of cost for the object, and he chose to call that the density.
@thankyouthankyou11724 жыл бұрын
11:44
@thankyouthankyou11724 жыл бұрын
20:00
@thankyouthankyou11724 жыл бұрын
22:00
@mohamedtarek85147 жыл бұрын
thnx MIT
@adracea7 жыл бұрын
Great course...but objectively speaking...we are always looking for a=b...now subjectively speaking...a=whatever the *user* wants... which brings us back to why we stick to frigging applying a linear transform on everything...
@alexandrearnold75463 жыл бұрын
The americans love examples with food
@rwnorris247 жыл бұрын
RE: Carnegie Hall Joke. --> Is that where Inglorious Bastards got the line from?
@aimene_tayebbey6 жыл бұрын
damn i'm hooked
@TheJyer227 жыл бұрын
hey help me. is he using phyton x,y?
@winkcrittenden60113 жыл бұрын
Kind of frustrating that he starts talking about vectors without ever actually explaining what they are. This wasn't covered in 6.0001.
@sharan99933 жыл бұрын
Vectors come in maths. Think of them as objects when added with another object gives u a same type of object. Amd when scaled by a constant float gives u a same type of object.
@winkcrittenden60113 жыл бұрын
@@sharan9993 so are they a specific type of object like a tuple or a list? I fully understand what a vector is in a math context. That's simple. What was skipped over here was their adaptation and use in coding applications.
@sharan99933 жыл бұрын
@@winkcrittenden6011 in maths we define them as a 2 coordinates in 2d and 3 in 3d etc. Here we define them as arrays. In python array can be implemented using list. Each vector can be thought of as a n list of numbers. If we move in higher dimensions we can increase the size of the list.
@winkcrittenden60113 жыл бұрын
@@sharan9993 that actually helps a lot. Thank you
@sharan99933 жыл бұрын
@@winkcrittenden6011 what r u learning this for machine learning?