This was honestly so so so helpful. From the bottom of my heart, thank you thank you THANK YOU so much. We need more tutors like you.
@m.donnediego5875 жыл бұрын
I like how you subtitle what you speak, it's helpful for me.
@AldenRyno13 жыл бұрын
@marcuswauson The integrand is [cos(theta)-(1/2)*cos(theta)] but when integrated, it becomes [sin(theta)-(1/2)*sin(theta)] from zero to pi/4. When evaluated equals sqrt(2)/2 - sqrt2)/4 = sqrt(2)/4
@rthelionheart4 жыл бұрын
In my school they simply say: evaluate the following integral just as given in part (a) above. It is entirely ALL UP TO YOU how you approach it. Of course one method makes life a whole lot easier than say compared to another one. It is expected that you know which method to use accordingly.
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/rHenfpR-hpmejZo ...💐
@VocalBeast Жыл бұрын
Man thank you so much, literally the first time i actual properly understood polar coordinate transformations despite trying to wrap my head around it for like 3 months. Appreciate you!!!
@ianmoseley99107 жыл бұрын
makes me realise how much I have forgotten in the 40+ years since uni. Expressing the integral in that graphic form was not something we were taught and it really helps me to grasp the whole concept; would have grokked so much more if we had been!
@ashtongaeta25814 жыл бұрын
Thank you I have to study at home because of the corona virus. This came in so clutch!!
@mitocw4 жыл бұрын
Happy to help!
@sairajbhosale398410 ай бұрын
This was so helpful to solve questions. My professor just solve 3-4 easy questions and left us with such questions Thanks a lot sir ..
@wssz1128 жыл бұрын
dam now i want to go to MIT
@shi_shii_4 жыл бұрын
Who doesn't?
@martinrosol77198 ай бұрын
@@shi_shii_ You?
@Jameel26313 жыл бұрын
@PeaceUdo Question a and b) The upper bound for y is y=x. The line y = x is always at a 45 degree (pi/4) angle with the x axis. If you dont get why, then for example lets say y = x = n (as y=x) then tan θ = n/n tan θ = 1 therefore θ=45 degree (pi/4)
@DeprecatedAPI6 жыл бұрын
This was really awesome, thanks! Helped me in my end sems!!
@oliverbrace450511 жыл бұрын
dude, you`re awesome, i was able to do my homework thanks to you
@anikethsridhargund66712 жыл бұрын
Thanks a lot, I was struggling to solve a problem related usage of polar coordinates in my assignment, but now i solved it in just 5min. thanks once again!
@alexandresauve756011 жыл бұрын
yes; and this is how we deal with it. find the range of angles for which r is negative, split these segments away from your first integral and put a negative sign in front in order to find the area. example r=cos(theta) from 0 to 2pi gives negative r from pi/2 to 3pi/2. the area enclose by r=cos(theta) = integral of rcos(thta) from 3pi/2 to pi/2 plus (-) integral cos(thta) from pi/2 to 3pi/2. integrating the original function from o to 2pi gives 0 if you ignore the fact r goes negative.
@muhammadzeeshankhan72518 жыл бұрын
Beautifully explained, I liked your teaching.
@MCSPT11712 жыл бұрын
Because he has (1/r^3) r drdΘ, if you combine that r with (1/r^3) it would have a negtive power if you put it over one, (r has a power of one), therefore it becomes (1/r^(3-1)... and becomes 1/r^2. Hope this helps.
@23StudiosSports3 жыл бұрын
That helps sp much you have no idea, you are a legend.
@morgard2114 жыл бұрын
These are actually very instructive excercises.
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/rHenfpR-hpmejZo ...💐
@NickZachPattyWack12 жыл бұрын
Not only do the brilliant students of MIT get excellent student teachers, but I can't understand majority of what my teacher says through his thick accent...and no my school is not well known even in the city that it resides in. Thanks David and MIT!
@benn71397 жыл бұрын
his chalk is so big
@vtace16 жыл бұрын
it's sidewalk chalk, writes better.
@Tech4GamingIndia6 жыл бұрын
brother this is MIT
@PunkHippie19715 жыл бұрын
It’s girthy
@captainobvious14154 жыл бұрын
“Chalk”
@sambalder93434 жыл бұрын
mmmm
@suruchisolanki36033 жыл бұрын
Thanks a lot MIT. I've finally understood the concept!!!
@meerismailali60822 жыл бұрын
You don’t just cancel the r in 10:45. You solve for quadratic
@shreyassahu69306 жыл бұрын
This is one of the best explanations for this topic.
@LICKSandWINKS11 жыл бұрын
I have an advanced calc exam on Tuesday AND YOU ARE A LIFE SAVER ILY
@gabrieltmapondera96977 жыл бұрын
how is dxdy equal to rdrdθ
@adellewilliams32667 жыл бұрын
to prove this , we use jacobian method. And we all know that from cartessian to polar coordinate , x=cos@ and y=sin@ then dxdy change to drd@ and apply this to jacobian matrix (dx/dr dx/d@ , dy/dr dy/d@) then we get rdrd@
@molkgfmf56997 жыл бұрын
or... dA = (dr) (ds)? = (dr) d(rθ) = r (dr) (dθ) = (dx) (dy)
@AkashYadav-mr4hg6 жыл бұрын
use Jacobian
@JamilKhan-hk1wl6 жыл бұрын
There is a simpler method to understand that, dxdy is actually a very small square. So its equal to rdrdtheta
@АзХашми6 жыл бұрын
Look up the Jacobian for polar coordinates
@st.johntsuno-wayne24892 жыл бұрын
only in Calc BC trying to solve an argument with a friend when i found this… video made the concepts simple to understand and was extremely informative!
@rkumaresh6 жыл бұрын
What a simple explanation which everyone could understand
@gnauhandy13 жыл бұрын
@marcuswauson you're evaluating 1/2 sin theta from 0-Pi/4.
@jbonn513 жыл бұрын
@maplestorypl He wrote it correctly. dA becomes r dr dtheta so the integral does become 1 / r^2.
@HimanshuShekhar13s6 жыл бұрын
Mindblowing explanation! Thanks!
@WolfBoyBenRawr12 жыл бұрын
Thank you David!! This was extremely helpful !
@aidenblack47555 жыл бұрын
How does he go from integral of 1/r^3 to the integral of 1/r^2 in one movement... 6:30-7:10 ??
@jeskomargargot34545 жыл бұрын
The r in rdrd∅ cancels one of the R's in (1/r³)
@aidenblack47555 жыл бұрын
@@jeskomargargot3454 Thank you sir! I watched this before the chapter was introduced in my course, makes sense now.
@edwinsebastianperezrodrigu86593 жыл бұрын
First time i watch a MIT class and i understand everything
@Dhavalc201111 жыл бұрын
Best ! Like IT ! Simply ,straight forward and lucid :D
@joshie9212 жыл бұрын
the -(1/r) can be changed to (1/r) if you swap the limits of integration, which is what he did here.
@vychuck10 жыл бұрын
Well done young man, really nailed it
@ananyarathore46782 жыл бұрын
loveddd ittt!!! thankyouuu so much david sir
@riya65494 жыл бұрын
is this the same as multiple integrals? im just starting out and im very confused...
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/rHenfpR-hpmejZo ...💐
@marcuswauson13 жыл бұрын
cos of 0 is not 0, cos of 0 is 1, your answer to a should be (squareroot of 2) minus 2 all over 4. As cos of 0 is one, and one minus a half should give you squareroot of 2 over four minus a half.
@anuraagkaravadi16409 жыл бұрын
limits explanation was awesome --which obviously is the heart and soul of the prob...lol in C in forgot to put square root.........
@rain7492513 жыл бұрын
Thanks! I think you articulate it really well. That's awsome! Wish you're my prof. Not to be disrespectful, but are you an undergraduate? You look like a peer.
@erikumble3 жыл бұрын
In the introduction video of the TAs, David was a graduate student. Of course, that was 10 years ago.
@QuantumDisciple712 жыл бұрын
Very nicely demonstrated. I appreciate it!
@sajathsalim2616 жыл бұрын
Oh my gosh.. Our IIT is world's best in terms of proffessor knowledge
@MohitSharma-wt9ex6 жыл бұрын
bro iit nahi VO MIT ka he . aur MIT no 1 he world me
@usamafarooqi72922 жыл бұрын
Brillient.... Absolutly great
@AbhayArsekar5 жыл бұрын
thank you so much David ❤️
@bs04anishmakhija184 жыл бұрын
IMAGINE Playing Chalk Fight with this MIT chalks😂😂😁🙈
@VikasSingh-cv2fu8 жыл бұрын
Good job bro. You really explain well.
@Wasteomindy7 жыл бұрын
6:31 how do we know that dydx becomes rdrdθ?
@adellewilliams32667 жыл бұрын
we change from cartessian to polar coordinate , to prove this use jacobian matrix then you will get the answer
@Paulovrish73345 жыл бұрын
Finally, it makes perfect sense
@HomoSapiensMember6 жыл бұрын
this helped me, thanks so much!
@syoushiro18376 жыл бұрын
at 10:33, you should not cancel the variable r because you miss the answer r = 0.
@petelok99694 жыл бұрын
Hi I need more practice to understand how to identify the sector which is to be integrated. Do you have a preceding video that demonstrates this?
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/rHenfpR-hpmejZo ...💐
@quratulainfatima1097 жыл бұрын
Explained beautifully........
@platinumk12 жыл бұрын
nice and concise. thank you david
@hargeysasomaliland437412 жыл бұрын
Best lecture . Thanks for your kindly helping
@arpanbanerjee56595 жыл бұрын
8:14 : incorrrect calculation, it is actually sqrt(2)/4 -1
@GradientSoln-En9 ай бұрын
Thank you, just thank you.
@noahmckeever90599 жыл бұрын
In part a) why do you go from 1/r^3 to 1/r^2?
@AlexVX_9 жыл бұрын
he multiplied 1/r^3 by the r from "r dr d theta", leaving 1/r^2
@femiairboy947 жыл бұрын
So how do you solve this if e^-x^2 is multiplied by Cos(bx) with respect to x
@HereToday3210 жыл бұрын
how do you know the maximum line is pi/4?
@jeffreychang229310 жыл бұрын
Look at a unit circle. You see that y = x is half of quadrant one and quadrant one is from 0 to pi/2. and half of that is pi/4 so you get theta = pi/4 as your max theta value.
@pudingstorm18 жыл бұрын
Than you man, great video, simple and nice explanation :D
@FirstGradeCalculus13 жыл бұрын
Great videos, David. Thanks kindly!
@johnpwnsyou11 жыл бұрын
No. There are several reasons why. First, r is a length, which logically can't be negative. Second, If you look at the formula, r=(x^2+y^2)^(1/2), you'll realize that there's no way for it to be negative since it's components are all squared.
@valkarez11375 жыл бұрын
youre stupid
@sreekarg95535 жыл бұрын
You’re replying to another comment aren’t you?
@prakharuttarpradesh3517 Жыл бұрын
Thank you professor You cleared all my doubts 🙏🙏 Dhanyawad and Namaskar
@русскийпартизан-ь6п7 жыл бұрын
I loved it! Thanks so much!!!
@Chaselwatitus4 жыл бұрын
explain more on how you find those limits. pie over 4. how did you find it
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/rHenfpR-hpmejZo ...💐
@DoggoWillink12 жыл бұрын
yeah, he didn't realize it was 1/r^3 when he re-wrote it
@ricardinhovorkes48766 жыл бұрын
Thank you thank you thank you I appreciate it a lot. Nice instructor very helpful
@nuklearboysymbiote5 жыл бұрын
How to explain why dydx becomes rdrdθ ?
@PollyBunch5 жыл бұрын
Professor Leonard has a full explanation about it.
the one thing i think that is missing when converting is that the F function at the end is not a function of x, y but r, theta you cant just plug in f given a function of x,y when in polar form
@anjaneyasharma3223 жыл бұрын
Students note double or triple integration does not give correct results. Follow simple integration. The question is why count something twice as it happens in double triple integration.
@vrendus52211 жыл бұрын
To the instructor, thank you.
@vinitamaharaj57387 жыл бұрын
Really helpful, thank you!
@MayankSharma-qd9ny3 жыл бұрын
Finally understood the concept
@hasanabs2 жыл бұрын
Does the last example diverge? Because the the internal integration integral[r=0,r=2sin(theta)] r^-2 dr = -1/r | [r=0,r=2sin(theta)] = -(1/2sin(theta)-1/0) = diverge
@sumballaboi12 жыл бұрын
great video mate, really helpful!!
@Lagos3sgte12 жыл бұрын
Great video! Really helpful.
@BlazeCyndaquil11 жыл бұрын
On the first one, shouldn't the result have been sqrt(2)/4 - 1/2? Wouldn't you have to subtract off the (1 - 1/2) from the lower bound of theta?
@pedroff_17 жыл бұрын
I think somewhere in the middle of a.), you accidentally replaced 1/r^3 with 1/r^2 ...
@sumeepriya54544 жыл бұрын
Watch it again its correct
@ChucksSEADnDEAD4 жыл бұрын
It was subtle but you have to watch out for the 1/r^3 r dr dtheta. The r in the nominator position crosses out one of the rs in the denominator leaving 1/r^2 dr dtheta.
@zeldadu0911 жыл бұрын
Great Video!!! Greetings from GT!!!
@beercity12313 жыл бұрын
Worth the watch! Very helpful!
@_tasneem73783 жыл бұрын
That was really helpful. Super clear!
@moasfco1113 жыл бұрын
thanks very helpful examples
@thomaswong81245 жыл бұрын
At 7:05 he messed up and put 1/r^2 not 1/r^3
@hellooobruh93982 ай бұрын
He is correct only
@olezhkoo8 күн бұрын
He simplified r/r^3
@deepakkumarchandel24443 жыл бұрын
Excellent no one able to tell how limits of polar are going on.🙏
@Dineshkumar-xv4xz6 жыл бұрын
Awesome thank you so much mit
@Artictundra4223 жыл бұрын
for the last one the int.val is not just from 0 to pi?
@ElectricTeaCup3 жыл бұрын
If you look at the initial bounds of x; they go from 0 to sqrt(2y-y^2). So think of the integral as slices across x from the horizontal x=0 to the x value determined by the equation. Thus overall, this means that the region R is on the right side of the x=0 horizontal line (y axis) and thus the right side of the circle which has bounds 0 to pi/2.
@alaamansour72719 жыл бұрын
In c, shouldn't theta be from 0 to pi.. Since it's half a circle?
@mg3byte9 жыл бұрын
Alaa M No, he is correct. Pi is equal to 180 degrees, and you can see that half a circle makes 90 degrees.
@krishnaghorai81466 жыл бұрын
Good base ,so love you sir!
@marciah44344 жыл бұрын
how do we know theta goes all the way up to pi/4 ?
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/rHenfpR-hpmejZo ...💐
@llama-pr6dn3 жыл бұрын
year late response but we know a 90 degree angle makes us go to pi/2, and because y=x makes a 45 degree angle, we can say it is half of pi/2 (which is equal to pi/4) edit: you can also convert it to polar form ; y=r(sin(theta)) & x=r(cos(theta)) . you set the two equal to each other because y =x and you'll get tan inverse = 1, which gets you pi/4
@freakingik27812 жыл бұрын
Welcome back
@thecivilizedguy84255 жыл бұрын
Very clear teaching!
@মহাপুরুষ-ঝ৭হ2 жыл бұрын
Sir plz help to make this in polar:double integral y=1 to 2,x=0 to 1 (1/x^2+y^2)dxdy
@nitesjung12744 жыл бұрын
Thank you so much kind sir.
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/rHenfpR-hpmejZo ...💐
@matthewskatuta13053 жыл бұрын
Excellent work
@nafa15318 жыл бұрын
In part a) how did he know that theta is pi/4?? I read in the comments someone wrote that y=x is half of the first quadrant and the first quadrant is pi/2 so half of that is pi/4... but what if I don't know that y=x is half of the first quadrant?
@jahremmardila62408 жыл бұрын
+Nafa1 My thought is to draw an arbitrary line with equation: x=# that will intersect the line, y=x. This would give you a right triangle, so you can find where they intersect for the y value, then solve for theta.
@abdullayafaee78478 жыл бұрын
+Nafa1 you can also substitute y with rsin(theta) and x with rcos(theta). then you get rsin(theta)=rcos(theta), now solve for theta , r's cancel , sin/cos = tan(theta) = 1 Do inverse tan and solve for angle theta and you get same answer.
@l1mmg0t3 жыл бұрын
I am an old man now. seems I can understand this better than my young age. feel like to go back to school.
@aman24267 жыл бұрын
This is a graphical approach, which is fine, but can this be done directly by looking at the Cartesian bounds of integration i.e without Graphing the regions?
@junior2142238 жыл бұрын
How did you know which point ot use to find r? in the first example you used x=1 and x=2 to find r =sec and 2sec. but in the second and third example you used the y=x and y=x^2 rather than using the x=0 and x=1, just confusing stuff like that makes me get different points of integration
@derek-rogers8 жыл бұрын
i also was very confused by that. he tried to be clever in the first example rather than just using a consistent method. if you take x=1 as the lower bound function and swap in the polar coordinates, you get r*cos(theta)=1. solving for r gets you 1/cos(theta) i.e. sec(theta). Same for the upper bound of x=2.
@TheZakihunk7 жыл бұрын
Exactly. Did anyone figure out a general way to do this? :/
@TheZakihunk7 жыл бұрын
Nevermind. I found the solution. He didn't explain this but here it is: The on which theeta is changing is the one we use to find the upper limit for r. Just simply equate that curve by replacing x and y with rsin(0) and rCos(0) respectively. In the first part, theeta was changing on x=1 so he used that to find the r's limits. In the second and third, you can see what i mean.
@language_loom5 жыл бұрын
How did you get theta equal to π/4 ???
@chinmayr39245 жыл бұрын
Bro put x=rcos(theta) any y=rsin(theta) in y=x and you will get π/4
@language_loom5 жыл бұрын
@@chinmayr3924 ohh😮
@LinaAhmadfuuuu5 жыл бұрын
This video helps me for my calculus 3 paper tomorrow!! Thanks a lot 💖