Impulse Response and Step Response

  Рет қаралды 65,959

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 38
@Labroidas
@Labroidas 3 жыл бұрын
God bless you, Professor Strang, thank you so much for everything you are doing for us students and for the world!
@itzm1kea
@itzm1kea 3 жыл бұрын
this man is one of the best teachers/professors I have ever seen
@eefunhuang6958
@eefunhuang6958 Жыл бұрын
Well said about the relationship between impulse response and step response!
@wallacechan2339
@wallacechan2339 3 жыл бұрын
Absolutely fantastic. Thank you Professor Strang.
@Joe_Yacketori
@Joe_Yacketori 5 жыл бұрын
8:16 His voice was underdamped.
@ejminava407
@ejminava407 5 жыл бұрын
lmao
@realhumphreyappleby
@realhumphreyappleby 4 жыл бұрын
Lol
@navidmohammadzadeh2141
@navidmohammadzadeh2141 7 жыл бұрын
Amazing and clear. Thank you!
@sossupummi
@sossupummi 26 күн бұрын
delta function's derivative delta'(t) at t=0 is not 1 but infinite? delta is supposed to be a function with infinitesimally small width and infinite height while keeping the area equal to 1
@iwonakozlowska6134
@iwonakozlowska6134 4 жыл бұрын
The step response r(t) is not exactly the integral of impulse response g(t) but it is the convolution of impulse response with the step function g(t)*u(t). r(t) is the same as presented in this video but under condition that C=1 , in other case we need to divide r(t) by C. By the way C=s1xs2.
@nicholasborrego1640
@nicholasborrego1640 3 жыл бұрын
Go away
@DRACOBUCIO
@DRACOBUCIO Жыл бұрын
r(t) is the convolution of impulse response with the step function g(t)*u(t), and that is the integral of g(tau) d(tau) from -inf to t. And in case of f(t) is causal signal, then the integral limits are from 0 to t. So... at the end of the road, r(t) is the integral of g(t).
@oussamarap2759
@oussamarap2759 Жыл бұрын
@@DRACOBUCIO can you explain a little bit more
@DRACOBUCIO
@DRACOBUCIO Жыл бұрын
@@oussamarap2759 Well, basically if you use a LTI system, x(t) -> y(t). Then x'(t)-> y'(t) or integral{x(t)} -> integral{y(t)}. That is because the integral or derivative is a linear operation. I would like to explain more intensive but you can send me message if you need a demo in order to satisfy your curiosity.
@DRACOBUCIO
@DRACOBUCIO Жыл бұрын
14:20 the most importan question in this video (my opinion). How the impulse response and the step response are related?
@carultch
@carultch Жыл бұрын
The step response is the integral of the impulse response.
@Y747Y
@Y747Y 3 жыл бұрын
The intrinsics of the materials must have negative real part of eigen value, otherwise the function will not goes to 1 when time goes to infinity.
@vajk7
@vajk7 8 жыл бұрын
Thank you for the inspiring nice videos, it's a pleasure to listen your lectures. Is it possible that the initial condition for the step response is r(0)=1, instead of r(0)=0?
@myvideo911
@myvideo911 7 жыл бұрын
it's ok. the aim is to decide the coefficient.
@getusel
@getusel 10 ай бұрын
That is impossible because a ramp function starts from zero and grows linearly.
@PSM1974
@PSM1974 7 ай бұрын
@15:05 the step function r(t) is not the integral of g(t) as given above…….there is a 1/(s1s2) term missing in the denominator of r(t) and the +1 in r(t) equates to 1/(s1s2)…so what gives? ….are there some special initial conditions that are needed to obtain r(t) as given above?…we can let s1 = 1/s2 and that will give r(t) above, but this seems a bit contrived…I’m looking for a formal definition/proof….anyone? Cheers
@ohmakademi
@ohmakademi 6 жыл бұрын
thank you very much.
@MrAngryCucaracha
@MrAngryCucaracha 6 жыл бұрын
but the formula for r(t) is not the integration of the formula for g(t). Am i making a mistake?
@kevinnejad1072
@kevinnejad1072 5 жыл бұрын
It would be if the initial conditions are set correctly. To see why that's the case, watch kzbin.info/www/bejne/e3TWnaCrfNGoY7c where prof. Strang explains about step function and delta function. In fact the whole video is about properties of these two functions.
@debajyotichoudhuri7896
@debajyotichoudhuri7896 4 ай бұрын
I am not sure how has r(t) converged to 1 asymptotically?. The added part in r(t) seems to not be converging to if s_1, s_2>0.
@freegg123
@freegg123 2 ай бұрын
If s1 and s2 are greater than 0, it indicates an unstable system meaning the output would increase exponentially rather than decaying to equilibrium, and of course it does not coverge to 1.
@wickbron8964
@wickbron8964 4 жыл бұрын
Is unit step response equal with step response
@PenningYu
@PenningYu 2 жыл бұрын
They are different. That's why he multiplied H by C.
@SimmySimmy
@SimmySimmy 5 жыл бұрын
Can I get output response(particular solution) under any arbitrary excitation to the system if I know its impulse response?
@SimmySimmy
@SimmySimmy 5 жыл бұрын
So the complete response would be the natural response(source-free) + excitation response?
@14598175
@14598175 7 жыл бұрын
What I wouldn't give to move your mic away by about 4 inches!
@lucass8610
@lucass8610 7 жыл бұрын
epic
@roshan8853
@roshan8853 7 жыл бұрын
Can someone guide me to see how to find the s1-s2 on the denominator?
@jonathansum9084
@jonathansum9084 7 жыл бұрын
This professor explains thing little bit ahead. You should watch these videos first. www.khanacademy.org/math/differential-equations/second-order-differential-equations After watching the videos on Khan, please solve the c1 and c2 in these two equations: y(t)=c1e^(s1*t) + c2e^(s2*t) y(0)= c1e^0 + c2 e^0 y(0)=c1+c2=0 thus, c1=-c2 Same with y prime y prime = come on, you know how to take the derivative y prime(0) = c1*s1+c2*s2=1 y prime(0) = -c2*s1+c2*s2=1 (why do i changing the c1 to -c2? read the "thus, c1=-c2" :D) Now you can solve these as a high school math: -c2*s1+c2*s2=1 c2(s2-s1)=1 c2= 1/(s2-s1) c2 = -1/(s1-s2) what is c1? c2=-c1 let's plug in the c1 and c2 into the y(t)=c1e^(s1*t) + c2e^(s2*t). you will get y(t)= [e^(s1t)-e^(s2t)]/(s1-s2)
@roshan8853
@roshan8853 7 жыл бұрын
Thank you! I appreciate the effort you went to
@jonathansum9084
@jonathansum9084 7 жыл бұрын
Did you get the 1/s1-s2 before I post my reply?
@T4l0nITA
@T4l0nITA 5 жыл бұрын
Thank you so much.
@Amine-gz7gq
@Amine-gz7gq Ай бұрын
Laplace Transform FTW
Exponential Response - Possible Resonance
12:20
MIT OpenCourseWare
Рет қаралды 17 М.
The Big Picture of Linear Algebra
15:57
MIT OpenCourseWare
Рет қаралды 987 М.
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 9 МЛН
Smart Sigma Kid #funny #sigma
00:33
CRAZY GREAPA
Рет қаралды 33 МЛН
015. Time Domain Response: RC Step and Impulse Response
22:13
Ali Hajimiri (Academy)
Рет қаралды 26 М.
Step Function and Delta Function
15:41
MIT OpenCourseWare
Рет қаралды 214 М.
What is the impulse response and pulse response?
5:44
Discretised
Рет қаралды 21 М.
The Step Response | Control Systems in Practice
14:56
MATLAB
Рет қаралды 167 М.
Laplace Transform: First Order Equation
22:38
MIT OpenCourseWare
Рет қаралды 292 М.
The Matrix Exponential
15:32
MIT OpenCourseWare
Рет қаралды 122 М.
Fourier Series
16:36
MIT OpenCourseWare
Рет қаралды 496 М.
The Logistic Equation
13:27
MIT OpenCourseWare
Рет қаралды 63 М.
Convolution and Unit Impulse Response
9:22
Physics Videos by Eugene Khutoryansky
Рет қаралды 240 М.