OMG! I'm a big fan of Gilbert Strang! I discovered him at college reading Linear Algebra and Its Applicatios. Immediately I knew I was in front of something different. The way he explains is of such a high quality, so natural. Here, in Argentina, the young ones would say "tiene flow!" haha. Now I just discovered this in KZbin and is the first time I actually see him "in person". Thank you VERY much professor Gilbert Strang for your amazing books 🙏❤️. And thank you for this video also!
@PeteZam7 жыл бұрын
Great video again. I love how you break down and dissect everything, and you do an amazing job of making it easy to follow. These videos have been extremely helpful.
@rafaelsouza45755 ай бұрын
Coming from the ML area, it's nice to hear about the regression equation and the sigmoid function in another context.
@cassioalles51165 жыл бұрын
Gilbert Strang , The friendly professor!
@Kori1147 жыл бұрын
Awesome lecture. I really liked the discussion of the solution.
@xiaominsong Жыл бұрын
This logistic equation is a great approximation of a start-up company's value's growth starting from joining a market to maturity or saturation state.
@Palisade58107 ай бұрын
This looks like the fermi-dirac distribution. And the number of fermions that can occupy a space is dampered by the pauli exclusion principle which makes perfect sense since no two particle being able to occupy the same spin state puts them in competition with eachother for the availiable states.
@victorburnett63293 жыл бұрын
Nothing more comfortable than watching this stuff.
@abdrrahimkhouya66605 жыл бұрын
Thank you sir for this lecture
@njabulomahlalela29127 жыл бұрын
that was brilliant, thank you MIT
@payammahbobi80294 жыл бұрын
Wow. Clear, Precise and Beautiful. Thank you Professor Strang!
@oneforallah8 жыл бұрын
Thanks for all the lectures MIT.
@jaeimp4 жыл бұрын
Derivation of the solution from @2:37:user-images.githubusercontent.com/9312897/89488137-39421900-d775-11ea-9fe8-8c7b953e3f1e.png
@nafizabdoulcarime5082 Жыл бұрын
awesome, many thanks
@suharsh967 жыл бұрын
This was really good! Thanks sir.
@Tony855C7 жыл бұрын
Where did you get that burgundy sweater. Must know.
@l1mmg0t4 жыл бұрын
always enjoy his class
@hamadalazmi44893 жыл бұрын
Amazing Prof. ❤️❤️❤️
@wifrigrosario50592 жыл бұрын
my question is the logistic expression for general supply chain, thanks
@zeyneptufan57895 жыл бұрын
Thank you so much, it is great and really helpful
@omarsanhaj69045 жыл бұрын
I would thank you professor Gilbert for you wonderful class, otherwise i still don't understand where the "a" in the numerator of the solution y(t) come from ? Thank you in advance for your clarfication
@stephenbeck72222 жыл бұрын
Let dz/dt = -az + b. Then separate variables to get dz/(-az+b) = dt, and integrate both sides and solve for z with normal calc 1 methods. You get z = (de^(-at)-b)/-a, where d = e^c, the constant of integration. Then you substitute back into y = 1/z to get the final solution. It's a neat trick. Normally in a calc 2 class I think you'd see it solved without the z substitution by using partial fractions.
@christianjimenez18775 жыл бұрын
Excelente clase. ¡Gracias!
@PremiDhruv2 жыл бұрын
-by2 term will make it more and more negative and that increases forever. Unable to understand how does it reach a steady state. there will be a time where the derivative is zero but then it will become negative and negative. Right ?
@geraldocarvalhobritojunior47936 жыл бұрын
Very nice! Thanks for the lecture...
@chinmoypal33973 жыл бұрын
Is there any we can listen to all of lectures
@brendawilliams80622 жыл бұрын
Thankyou
@feyisayoadediwura18964 жыл бұрын
Thank you.
@surendrakverma5552 жыл бұрын
Very good 🙏🙏🙏🙏🙏
@gregmcn116 жыл бұрын
What are the steps to the solution at 4.30 ?
@xayanwelsh6 жыл бұрын
You can use e^-at as your integrating factor and solve from there to get the solution e^[ integral ( -a ) dt ] constant coefficient
@tenzin93274 жыл бұрын
dz /(az-b) = -dt integrate both sides substitute az-b = u adz =dr , dz=1/a *dr 1/a integrand 1/r dr = -t + c1 ln r + c2 = -at +ac1 ln r = -at + ac1 -c2 a,c1 and c2 are all constants let ac1 -c2 = c3 ln r = -at + c3 r = e^ -at +c3 r = e^-at . e^ c3 r= e^ -at .d az -b = e^ at .d az= e^at *d +b y=a/(e^at *d +b )
@jaeimp4 жыл бұрын
Here is the derivation: user-images.githubusercontent.com/9312897/89488137-39421900-d775-11ea-9fe8-8c7b953e3f1e.png
@phillipechavda36543 жыл бұрын
@@tenzin9327 you did it the hard way, dz /(az-b) = -dt -> integrate bouth sides ln(az-b)/a = -t + C -> put an "e" under bouth sides az-b = e^(-at+aC) az - b = e^(-at)*d (if e^(aC) = d) z = (b+d*e^(-at))/a y = a/(b+d*e^(-at))
@awesomecat22932 жыл бұрын
T=0 is probably y=2020
@andykim95366 жыл бұрын
where does that b comes from in the equation?
@tenzin93274 жыл бұрын
dz /(az-b) = -dt integrate both sides substitute az-b = u adz =dr , dz=1/a *dr 1/a integrand 1/r dr = -t + c1 ln r + c2 = -at +ac1 ln r = -at + ac1 -c2 a,c1 and c2 are all constants let ac1 -c2 = c3 ln r = -at + c3 r = e^ -at +c3 r = e^-at . e^ c3 r= e^ -at .d az -b = e^ at .d az= e^at *d +b y=a/(e^at *d +b )
@Wondermass7 жыл бұрын
We did a video (featuring the logistic equation) about where equations come from in social science: kzbin.info/www/bejne/sIm8Z397rK2al6s
@Tony855C7 жыл бұрын
Huge respect for being 40+ older than anyone else teaching math on KZbin. He's pwning newbs on a website he ain't even know how to use.
@oldPrince225 жыл бұрын
Anyone considered the case that the population is 1, not 0 neither a/b? But one person cannot give birth to babies...