Positive Definite Matrices and Minima

  Рет қаралды 112,690

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер
@mekala
@mekala 2 жыл бұрын
We can also calculate C for the semi-specific case by taking the correct combinations of the first two columns or rows. Matrix will be positive semidefinite when det is zero. We know matrix is singular when determinant is zero. [2 -1 -1] [-1 2 -1] [-1 -1 2+C] If we take - 1 * column1 + (-1 * column2) : -2 - 1 = -1 1 - 2 = -1 1 + 1 = 2 So if matrix is singular 2 + c = 2 ----> c = 0
@alperaslan5865
@alperaslan5865 3 жыл бұрын
If she was my lecturer, I would never miss any of her classes.
@tonguc745
@tonguc745 3 жыл бұрын
MIT de ne okudun reis
@ericawanja1749
@ericawanja1749 3 жыл бұрын
You remind me that I am here after missing a lecture 😅😌
@emmanuelisichei-zr7mp
@emmanuelisichei-zr7mp 11 ай бұрын
Seriously dude
@emmanuelisichei-zr7mp
@emmanuelisichei-zr7mp 11 ай бұрын
Seriously dude
@alejandrosanchez3246
@alejandrosanchez3246 7 ай бұрын
Seriously dude
@justpaulo
@justpaulo 4 жыл бұрын
It seems to me that the pivot test was much faster and easy. In addition it seems that from the U matrix you can read directly the final "complete the square" equation.
@yigitsezer6696
@yigitsezer6696 4 жыл бұрын
I think it depends on the matrix. For bigger matrices you are right of course.
@WelsyCZ
@WelsyCZ 4 жыл бұрын
It was because the Instructor already knew how to complete the square. Finding out how to complete the square would take longer than calculating the determinants.
@kimmielee3100
@kimmielee3100 3 жыл бұрын
You can see from the pivot test that the pivots in the echelon form of the matrix are also the coefficients of these squares, and when we use the distributive laws for each row to extract the pivots from each row, we left with the coefficients of x, y, and z in the squares.
@kimmielee3100
@kimmielee3100 3 жыл бұрын
And that explains how the instructor can read the equation immediately from the results she got in the pivot test.
@Robocat754
@Robocat754 2 жыл бұрын
Overall very good explanation. But I don't see how the formulas in the upper right corner could help us with the completing the squares. It's not the same. Anyway it's very simple that you can actually do it in your head when you already know the pattern. Another point is that in the end you talked about the null space of positive definite matrix but you didn't come up with a conclusion. It's not mentioned in the last lecture either.
@yasseralabaishi6693
@yasseralabaishi6693 6 жыл бұрын
She really good in explaining 👍👍
@user-or7ji5hv8y
@user-or7ji5hv8y 3 жыл бұрын
Very clear and concise. Thanks
@matthewjames7513
@matthewjames7513 2 жыл бұрын
is A = [ -1 0; 0 -4] negative definite? Method 1: Determinant method -1 < 0 (first sub matrix) -1*-4-0*0 = 4 > 0 (second sub matrix) Therefore this matrix is indefinite Method 2: eigenvalues lambda1 = -1 < 0 lambda2 = -4 < 0 Therefore this matrix is negative definite What am I doing wrong here!?
@capturedart0
@capturedart0 9 ай бұрын
pivots test is better than determinant
@jonathannielsen1247
@jonathannielsen1247 6 ай бұрын
When using the determinant for the negative definite case, you have to check if (-1)^k*Det(submatrix) > 0, where k is the dimension of the submatrix. Therefore in your case, you need to do as follows: D1 = -1*(-1)^1 = 1 > 0 and D2 = 4*(-1)^2 = 4 >0. Because D1>0 og D2>0, it is negative definite. Hope it makes sense, that you need to multiply with (-1)^k
@radicalpotato666
@radicalpotato666 Жыл бұрын
Are they all necessary and sufficient tests, anyone?
@АлександрСницаренко-р4д
@АлександрСницаренко-р4д 3 жыл бұрын
when c=0, the matrix is a positive semidefinite?
@sentyjessicaakok2066
@sentyjessicaakok2066 3 жыл бұрын
0 has no signs, hence semipositive definite.
@kirillnovik8661
@kirillnovik8661 3 жыл бұрын
I think that without any further information the scenario where c=0 would mean that it can be positive semidefinite, negative semidefinite or indefinite
@hsccbo32385
@hsccbo32385 5 жыл бұрын
You sholdn't expect determinant test to work for positive semi-definite matrices. Consider the matrix, [0 0] [0 -1] which certainly passes the ">=0" condition for all the principal submatrices yet its spectrum is {0, -1}.
@mozhdehyazdanifard6565
@mozhdehyazdanifard6565 5 жыл бұрын
You are damn right! Thanks for your comment. However, she's still a pretty smart girl to me. She is a teaching assistant at MIT.
@mozhdehyazdanifard6565
@mozhdehyazdanifard6565 5 жыл бұрын
I think the only reliable method is to follow "completing the square"! You barely can see what you are doing. I brought an example which indicates how possibly her methods lead to potential mistakes. I brought in another comment, not as reply under your comment.
@hsccbo32385
@hsccbo32385 5 жыл бұрын
​@@mozhdehyazdanifard6565 Well, for positive definite matrices the test works fine. But note that it is fine because determinant of leading principal submatrices are incremental products of pivots. We know that matrix A is positive definite iff all of A's pivots are positive. If any zero pivot appears earlier than negative pivots, you won't detect that negative pivot. The test wouldn't even make sense if there's a zero in the middle, because you need to do the row-exchange in Gaussian elliminiation, but then what should the pivot be? (unless you skip that zero-pivot column directly, I'm not sure what would the natural constraint for this to work be.) You could, instead, require that all principal submatrices (not necessarily leading) having non-negative determinant.
@mozhdehyazdanifard6565
@mozhdehyazdanifard6565 5 жыл бұрын
​@Taylor Huang You are right! Now, I see why your example is special. can you say why mine is not in compatible with what she said? I think my matrix can be considered as counterexample to take into question all what she said, not just the "determinant test" method. My example matrix which is brought in the first comment on this video. [2 -2 -2 ] [0 2 -2 ] [0 0 2+c] 1st Method) using "completing square" we derive the same expression as what she achieved for her own example; so we have: C > 0 2* x^2 + 2* y^2 + (2+c)* z^2 - 2 xy -2xz - 2yz 2nd, 3rd methods) while following "determinant test" and "pivot test" methods we end up with a result like: c> -2
@hsccbo32385
@hsccbo32385 5 жыл бұрын
@@mozhdehyazdanifard6565 everything is under assumption that the matrix is Hermitian (in real matrices, it's symmetric)
@quirkyquester
@quirkyquester 4 жыл бұрын
Thank you!
@reactioner2005
@reactioner2005 8 ай бұрын
I like how teaching assistants are smiling after 5 second being out of view
@islamhaouas7015
@islamhaouas7015 4 жыл бұрын
thank you very much
@SIYA-PAL
@SIYA-PAL 2 жыл бұрын
Love from India mam thanks u 😇😇🙏😄🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳 u r very jenious because I injoy understand everything thanks
@nemesis9080
@nemesis9080 Жыл бұрын
चुतिये अपनी मां की चुट पे टैटू करवाले ये इंग्लिश... नहीं आता तो सीधा THANK YOU दे
@SIYA-PAL
@SIYA-PAL 2 жыл бұрын
Very easy way अब अंपने बताया means u understand me very ejey
@mathzone4893
@mathzone4893 4 жыл бұрын
Very nice explain 👍👍
@S_hubham_singh
@S_hubham_singh 11 ай бұрын
She is so cute😊
@SIYA-PAL
@SIYA-PAL 2 жыл бұрын
Aanp bahoot axcha study krati hai mujhe anpka sab kuch samajh aata hai it's hindhi but wriiten in English 😄😄😄😄😄🇮🇳🇮🇳
@SIYA-PAL
@SIYA-PAL 2 жыл бұрын
I Lives in India but i ever study by u bicouse u r a English girl so I can to talk English by hearing your voice 🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳 i lives in up loknow India 🇮🇳
@oualidbenamar6468
@oualidbenamar6468 6 жыл бұрын
thanks
@bettypassion5164
@bettypassion5164 3 жыл бұрын
Good
@mozhdehyazdanifard6565
@mozhdehyazdanifard6565 5 жыл бұрын
Thanks for your quite useful video. Your explanations are pretty clear for dummies like me! You are pretty smart, and also a good teacher. You are also beautiful. My brother was distracted by your beauty.. He could not take his eyes off you, to look at the whiteboard. He had to watch your video some couple of times. Do not worry. I'll explain it for him.
@quirkyquester
@quirkyquester 4 жыл бұрын
loll hahhahaha thats so funny
@shabnamahmed9136
@shabnamahmed9136 4 жыл бұрын
Are you talking about your brother or yourself coz it's black board 😂
@mozhdehyazdanifard6565
@mozhdehyazdanifard6565 4 жыл бұрын
@@shabnamahmed9136 It was long time ago that I posted this comment. No I was distracted by my brother's eccentric behavior.
@mozhdehyazdanifard6565
@mozhdehyazdanifard6565 4 жыл бұрын
By the way, You are right; that is actually a blackboard, not whiteboard! I'm not sure why I did this mistake, even if I was distracted by him. Maybe I have to practice some more English!
@strossicro1
@strossicro1 2 жыл бұрын
Oklen si mala.
@noemilaszlo8822
@noemilaszlo8822 4 жыл бұрын
the cameramen is making me sea sick
@yashas9974
@yashas9974 4 жыл бұрын
I didn't even notice it.
@akagamishanks-q3o
@akagamishanks-q3o 4 жыл бұрын
Lookin good :)
@mozhdehyazdanifard6565
@mozhdehyazdanifard6565 5 жыл бұрын
I think what you said is all incorrect!!! I'll bring another matrix that takes into question all what you have mentioned. That is why I'm dummy :( ------------------------------------------------- 1) Completing the Square: ------------------------------------------------- Using the method "completed squared" does not seem to be compatible with other test methods! However, this is the most reliable method, so other methods cannot be used! For example, we know that the following matrix should have equal results with what you presented: [2 -2 -2 ] [0 2 -2 ] [0 0 2+c] Using "completed squared" we have: 2* x^2 + 2* y^2 + (2+c)* z^2 - 2 xy -2xz - 2yz This is the same expression as what you have derived for your matrix. --> As you said: C > 0 ---------------------------------- 2) determinant test: ---------------------------------- What we see is that the determinant of the whole matrix is 2 * 2 * (2+c) = 8 + 4C > 0 ---> C> -2 !!!! ------------------------- 3) pivot test: ------------------------- It's an upper triangle matrix. All that is required is to divide the rows by 2, except the third one: 2 * [1 -1 -1 ] 2* [0 1 -1 ] (2+c) [0 0 1 ] ---> 2( x-y-z)^2 + 2 * (y-z)^2 + (2+c)* z^2 !!!! --> C > -2 , but that is not equal to what you derived for "completing the square"!
@rhversity5965
@rhversity5965 5 жыл бұрын
Matrices are only positive definite if they are symmetric. Your matrix is not symmetric so it fails the test.
@martinpesek8377
@martinpesek8377 4 жыл бұрын
@@rhversity5965 I disagree. A non symmetric matrix may be positive definite, but the so-called determinant test is not applicable and may show wrong results. E.g. ((2,0)(2,2))
@mgk4908
@mgk4908 4 жыл бұрын
Very few women can do maths the way she's doing.
@hugofidelcamposespinoza4913
@hugofidelcamposespinoza4913 3 жыл бұрын
en.wikipedia(dot)org/wiki/List_of_women_in_mathematics
@ga7073
@ga7073 3 жыл бұрын
Not "can do", but "would do". Despite all the freedom to conquer STEM disciplines, only a minority of women are attracted by this ..
@mimialaa4980
@mimialaa4980 3 жыл бұрын
Thank you ❤️😊
27. Positive Definite Matrices and Minima
50:40
MIT OpenCourseWare
Рет қаралды 255 М.
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
The determinant | Chapter 6, Essence of linear algebra
10:03
3Blue1Brown
Рет қаралды 3,9 МЛН
28. Similar Matrices and Jordan Form
45:56
MIT OpenCourseWare
Рет қаралды 120 М.
A Criterion for Positive Definiteness of a Symmetric Matrix
16:19
MathTheBeautiful
Рет қаралды 20 М.
Positive Definite Matrices
21:41
MIT OpenCourseWare
Рет қаралды 93 М.
The Jacobian Matrix
40:21
Christopher Lum
Рет қаралды 14 М.
Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra
17:16
5. Positive Definite and Semidefinite Matrices
45:27
MIT OpenCourseWare
Рет қаралды 161 М.
What the 1869 MIT Entrance Exam Reveals About Math Today
13:51
polymathematic
Рет қаралды 44 М.
6. Singular Value Decomposition (SVD)
53:34
MIT OpenCourseWare
Рет қаралды 230 М.
Masters vs PhD in mathematics
22:53
Struggling Grad Student
Рет қаралды 110 М.