(ML 11.3) Frequentist risk, Bayesian expected loss, and Bayes risk

  Рет қаралды 31,108

mathematicalmonk

mathematicalmonk

Күн бұрын

A simple way to visualize the relationships between the frequentist risk, Bayesian expected loss, and Bayes risk.

Пікірлер: 11
@bztube888
@bztube888 8 жыл бұрын
Great, intuitive explanation. Books like to attack with formulas before bother to try to explain the ideas behind them.
@marvinpolo6106
@marvinpolo6106 3 жыл бұрын
him: "what makes it confusing is a bunch of bad notation" *starts explaining by introducing bunch of notation" ...interesting
@sairushikjasti660
@sairushikjasti660 2 жыл бұрын
"what makes it confusing is a bunch of bad notations" me watching this video and not understanding a single notation, welp
@frobeniusfg
@frobeniusfg 5 жыл бұрын
This is your last chance. After this there is no turning back. You take the red pill: the story ends, you wake up in your bed and believe whatever frequentists want you to believe. You take the blue pill: you stay in Bayesland and I show you how deep the rabbit hole goes.
@jiatianxu757
@jiatianxu757 4 жыл бұрын
Actually, we usually care about L(y-hat, y) which is L(f(theta hat), y)
@jinghuayan5128
@jinghuayan5128 5 жыл бұрын
what do you mean by average over theta? I am a little clueless about this. Looking forward to hear from you, thank you!
@yugiohgx114
@yugiohgx114 4 жыл бұрын
Average over theta means that we multiply the loss function L(theta, f(D)) by the posterior probabilities p(theta | D) for all values of theta
@mojomagoojohnson
@mojomagoojohnson 10 жыл бұрын
Great!
@danielmburu6936
@danielmburu6936 9 жыл бұрын
hello how can i get the posterior distribution of the poisson given the prior as e raised to power labda
@jiatianxu757
@jiatianxu757 4 жыл бұрын
P(theta|D) is proportional for P(D|theta) * P(theta), in your case, it will be the Poisson mass function given theta * the prior dist.
@auggiewilliams3565
@auggiewilliams3565 6 жыл бұрын
poor explanation
(ML 11.4) Choosing a decision rule - Bayesian and frequentist
10:06
mathematicalmonk
Рет қаралды 10 М.
(ML 10.1) Bayesian Linear Regression
11:45
mathematicalmonk
Рет қаралды 85 М.
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
(ML 11.1) Estimators
12:33
mathematicalmonk
Рет қаралды 85 М.
(ML 11.8) Bayesian decision theory
14:53
mathematicalmonk
Рет қаралды 38 М.
(ML 12.4) Bayesian model selection
13:17
mathematicalmonk
Рет қаралды 25 М.
(ML 11.5) Bias-Variance decomposition
13:34
mathematicalmonk
Рет қаралды 48 М.
(ML 10.4) Predictive distribution for linear regression (part 1)
14:55
mathematicalmonk
Рет қаралды 23 М.
Zero Emissions?
49:29
Deracinated Ape
Рет қаралды 4
C can do this too and it's faster than Python
2:09:48
Tsoding Daily
Рет қаралды 6 М.
(ML 8.2) More about Naive Bayes
14:43
mathematicalmonk
Рет қаралды 15 М.
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН