MLflow Pipelines: Accelerating MLOps from Development to Production

  Рет қаралды 26,677

Databricks

Databricks

Күн бұрын

Пікірлер: 10
@ousmanetraore597
@ousmanetraore597 Жыл бұрын
Why every one using yaml everywhere? with no code completion, difficult to test/validate, every thing needs to be in a single huge file because we can't use function abstraction ? This is fine for simple "transform"-> "train" -> "test" pipeline, but become very hard for complexe ones. I prefer the Airflow way of defining pipelines with Python code.
@risebyliftingothers
@risebyliftingothers Жыл бұрын
managing airflow infra in house is a task in itself. flexibility comes at a cost. and btw yaml is what kubernetes thrives on and most of infra-as-code tools :)
@bharathjc4700
@bharathjc4700 2 жыл бұрын
How do we move the artifacts to prodiution
@swatikarot8272
@swatikarot8272 2 жыл бұрын
Love this. Thanks for the great session. 👍
@geleshgomathil3274
@geleshgomathil3274 Жыл бұрын
Notebook & Slides Link
@jerryyang7270
@jerryyang7270 Жыл бұрын
This is great!
@rohitchatterjee2327
@rohitchatterjee2327 Жыл бұрын
this was a very good session
@sitrakaforler8696
@sitrakaforler8696 Жыл бұрын
Cool
@LavaKafleNepal
@LavaKafleNepal 2 жыл бұрын
wow awesome
Technical and Tactical Football Analysis Through Data
39:35
Databricks
Рет қаралды 25 М.
Мама у нас строгая
00:20
VAVAN
Рет қаралды 10 МЛН
Can You Find Hulk's True Love? Real vs Fake Girlfriend Challenge | Roblox 3D
00:24
Каха и лужа  #непосредственнокаха
00:15
Building AI Agent Systems with Databricks
5:26
Databricks
Рет қаралды 1,6 М.
Mixed Attention & LLM Context | Data Brew | Episode 35
39:12
Inside Databricks SQL: Engineering innovation with Hans
2:35
Databricks Workflows
8:10
Databricks
Рет қаралды 515
Automate Unity Catalog Upgrade with UCX Part 1: Overview
5:54