amasing video , clear and direct. please never stop making these !! thank you
@go64bit Жыл бұрын
Amazing lecture. Very good explanation of SSD and its EfficientDet descendants.
@logansizemore47353 жыл бұрын
Best description I found. Good presentation. I love the visuals.
@MyungeinHan11 ай бұрын
This is really ground breaking! I love your explanation. Straight to the point & Simple.
@MLTOKYO10 ай бұрын
We'll pass the feedback on! :)
@gennarofarina942 жыл бұрын
Many compliments. This is a great introduction to SSD and its directions for improvement.
@danielkusuma64733 жыл бұрын
Very clear explanation and description of basically the original paper. Thank you!
@199167185143 жыл бұрын
best explaination on ssd i have ever found!
@hole3867 ай бұрын
Finnaly someone explaining how they actually make detections. So many people on here gloss over that part, and explain nothing about how the featuremaps are turned into boxes.
@AmlanPanigrahi3 жыл бұрын
This is so clean and thorough!
@atticross3 жыл бұрын
You have fantastic pedagogical skills. Thanks for the clear and lovely explanations
@hanshima_2 жыл бұрын
Thanks for your generosity to teach this topic.
@RajkamalUdayasuriyan7 ай бұрын
Thank you for this wonderful Video, May I know how the default bounding boxes are encoded and what are their default location , size and aspect ratio in a feature map ?
@Paladin1983PL9 ай бұрын
Where can I get coordinates of the default 8732 boxes? I need to interpret the raw output localization tensor (the one with size [1,4,8732]) using C++ (LibTorch) so I can't use nvidia_ssd_processing_utils for that. I understand how to calculate the final bounding boxes but I don't have the default box data (dx, dy, dw, dh).
@kotanvich2 жыл бұрын
Thanks a lot, great and clear explanation
@asifmehmood68033 жыл бұрын
Could you please make videos on RCNN and its variants with focus on RPN?
@lackofsleep76532 жыл бұрын
You’re wonderful and save my life!!!!
@hosseinmadadi91412 жыл бұрын
it was very useful and thank you for your time!
@mariamIbrahim5848 Жыл бұрын
very clear and helpful thank you
@from-chimp-to-champ12 жыл бұрын
Beautiful lecture, thank you sir! May I just ask a little question? On the GIF visualizations that you show, it intuitively seems like we perform convolution of default bounding boxes with the feature maps of different scales. But it is written, that the actual size of convolutional blocks is 3 x 3. Could you clarify, how convolutions of feature maps with 3 x 3 blocks "intuite", with which default bounding box the network is working? Thank you very much! Sincerely, Pavel
@granatapfel66613 жыл бұрын
Can I use your presentation for my university project?
@yasminemohamed51572 жыл бұрын
such a great video, thank you!
@clashtm8210 Жыл бұрын
Great lecture.
@antonioconsiglio952 жыл бұрын
Thanks for sharing, good explanation.
@harshdevmurari007 Жыл бұрын
crystal clear explaination
@lotfilofti62202 жыл бұрын
in 6:27 you have 6 results concatenated in the detection block (detection 8732 by class), but in 11:55 you have only 5 outputs (features maps) ??????????????????????????????????????????????????????????????????????????????????????????????!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
@AIandtheworld2 жыл бұрын
This was amazing!
@budiandraym84512 жыл бұрын
is ssd using FFNN or CNN ?
@rezarawassizadeh46013 жыл бұрын
Very good explanation, but it seems your layers are not correct they are 6 layers not 5.