Bro, this is a very good explanation. This information is rare. Thanks a lot
@Hassan.Wahba.973 жыл бұрын
We have been waiting for THIS!!!!! Thank you
@TheGao19783 жыл бұрын
Great video. Thanks! So if PR seems to work for both balanced and imbalanced data sets, why would you not just always use PR curves? When would ROC make more sense?
@anonxnor3 жыл бұрын
I've been looking at ROC AUC score for my unbalanced dataset. I will have to look at PR AUC instead, thank you.
@Clarissa29962 жыл бұрын
this helped me so much with my unbalanced data.
@CodeEmporium2 жыл бұрын
Super glad it did!
@NaimishBalaji3 жыл бұрын
Haha this is *exactly* what I was looking for (implementing the curves from scratch). Thanks mate!
@ivanallan86843 жыл бұрын
I know it's quite off topic but do anybody know of a good website to watch new movies online ?
@madduxsam21913 жыл бұрын
@Ivan Allan I would suggest Flixzone. Just google for it :)
@nicholasarthur55253 жыл бұрын
@Maddux Sam Definitely, have been watching on flixzone for since april myself =)
@ivanallan86843 жыл бұрын
@Maddux Sam thank you, signed up and it seems like they got a lot of movies there :) I really appreciate it !!
@madduxsam21913 жыл бұрын
@Ivan Allan happy to help xD
@RDK-22923 жыл бұрын
Thanks so much, definitely needed this
@teetanrobotics53633 жыл бұрын
these coding videos are lit
@ehsankhorasani_3 жыл бұрын
yet another awesome video. your amazing
@ehsankhorasani_3 жыл бұрын
one advice from me. please change your profile photo it makes your channel seems less professional.
@mohamedsouibgui37322 жыл бұрын
thank you so much
@7justfun3 жыл бұрын
If I have a distance metric as the output of a model ( say euclidean distance in face verification for matching and mismatched pairs). How do you choose a cut off of the euclidean distance ? I guess we can use same concept only a low score is indicative of +ve match class and high score is indicative of a -ve mismatch true negative class
@7justfun3 жыл бұрын
one technique i did was to divide the eulidean distances by 100 ( so 15.37 for a mismatch would be .1537, and 3.23 for a match case would be .0323, then i would subtract it from 1 so that they look like probabilites of similarity , can i then use these to plot the ROC curves ? SO that i can choose a threshold with high TPR and low FPR.