Evaluation Measures for Search and Recommender Systems

  Рет қаралды 12,481

James Briggs

James Briggs

Күн бұрын

Пікірлер: 25
@aminghaderi1902
@aminghaderi1902 11 ай бұрын
Probably best explanation out there.
@goelnikhils
@goelnikhils 2 жыл бұрын
Hi James, I have a question on NDCG or any other ranking aware metrics. How does these metrics work where you have millions of products/items. What I mean is if we have millions of items, then it means we have to first label (manually) all the million items for relevance /rank. And then when our model predicts we use NDCG. Isn't this a big drawback of NDCG. Can you please suggest what is better approach to rank if we don't have relevance labeled data. Thanks in
@preetimehta1247
@preetimehta1247 11 ай бұрын
Hi , I have a query If I am working on a song recommendation project by using Spotify API data set, I have used models like cosine similarity, matrix factorization, knn , Latent Semantic Analysis (LSA) model, Correlation Distance method. Now I am confused about how should I approach for evaluation metric in this system.
@goelnikhils
@goelnikhils 2 жыл бұрын
Amazing Explanation. So clear. Very helpful
@shrar837
@shrar837 2 жыл бұрын
Your videos are impressive and very informative mate. 👌
@jamesbriggs
@jamesbriggs 2 жыл бұрын
thanks!
@anujlahoty8022
@anujlahoty8022 Жыл бұрын
What a video, hats off!
@parsakhavarinejad
@parsakhavarinejad Жыл бұрын
Clearly explained. Thank you
@Han-ve8uh
@Han-ve8uh Жыл бұрын
1. I got confused at 18:29 when predicted is a nicely increasing sequence making me think are those ranks or item ids. I was also thinking whether the len of intersection act_set & pred_set could simply be len(act_set), then i realized this example here is a very special case where act_set is subset of pred_set. If act_set contains value 9, then we can't use len(act_set) alone and the formula in video is required. 2. Similar to question nikhil goel asked in comments section 2 weeks before this, where does 13:46 actual_relevant data come from? It looks manually labelled, and this labelling occurs per query making it super unscalable?. 3. Assuming we accept manual labelling how is the 0-4 range determined? I feel like drift is a problem, when todays 4 becomes tomorrows' 3 as value judgements change, does this mean relabelling all results again? 4. I noticed some metrics aggregate across queries and k, and some are only within 1 query across k, in what scenarios do we use each? 5. I didn't expect a *relk in AP@K formula, why do we ignore certain precision at certain k? Feels like artificially increasing metrics for the sake of it, which becomes ineffective if every query does it
@sriks4003
@sriks4003 8 ай бұрын
Very helpful, thank you!
@sumantjha8392
@sumantjha8392 2 жыл бұрын
Super informative and great..thanks
@miguelfsousa
@miguelfsousa Жыл бұрын
This video is great.
@morannechushtan2101
@morannechushtan2101 Жыл бұрын
21:23 Statistically there is probably a cat in the box on image 3
@Data_scientist_t3rmi
@Data_scientist_t3rmi 2 жыл бұрын
IN MRR, when our search result doesnt inclued the result that we want, for your example if we want to search for cats and we find only dogs, how can we calculate MRR ? can we give it a big number for exemple rank 20 for all Not included results? 1/20
@jamesbriggs
@jamesbriggs 2 жыл бұрын
yes as you said - or use another metric that better fits to your scenario
@Data_scientist_t3rmi
@Data_scientist_t3rmi 2 жыл бұрын
@@jamesbriggs Thank you for your answer
@vishalwaghmare3130
@vishalwaghmare3130 2 жыл бұрын
Very helpful ❣️
@HazemAzim
@HazemAzim Жыл бұрын
Super nice .. Thanks
@Data_scientist_t3rmi
@Data_scientist_t3rmi 2 жыл бұрын
Good video !
@tarikkarakas587
@tarikkarakas587 2 жыл бұрын
Biggest problem is labeling the product whether it is relevant or not. It is not possible to label each search. Meanless if you can't handle with that.
@jamesbriggs
@jamesbriggs 2 жыл бұрын
Yeah data prep as usual with ML is the hard part, if you're interested in evaluation methods for IR *without* labeled data look into online metrics for eval (and training)
@joyeetamallik5063
@joyeetamallik5063 2 жыл бұрын
Hi James! can u make some vedios of updating Models if we Keep on getting data(e.g Biweekly)
@jamesbriggs
@jamesbriggs 2 жыл бұрын
cool idea! I'll add to the list :)
@mattygrows7667
@mattygrows7667 2 жыл бұрын
love your videos but why do you always seem so sad
@jamesbriggs
@jamesbriggs 2 жыл бұрын
thanks! idk I'm happy I promise lol
Metadata Filtering for Vector Search + Latest Filter Tech
34:14
James Briggs
Рет қаралды 8 М.
Wayfair Data Science Explains It All: Evaluating Recommender Systems
9:26
Wayfair Data Science
Рет қаралды 12 М.
КОНЦЕРТЫ:  2 сезон | 1 выпуск | Камызяки
46:36
ТНТ Смотри еще!
Рет қаралды 3,7 МЛН
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,6 МЛН
3 Vector-based Methods for Similarity Search (TF-IDF, BM25, SBERT)
29:24
Mean Reciprocal Rank (MRR): Evaluating a Retrieval System
8:23
Computing For All
Рет қаралды 723
SPLADE: the first search model to beat BM25
28:52
James Briggs
Рет қаралды 20 М.
Choosing Indexes for Similarity Search (Faiss in Python)
31:33
James Briggs
Рет қаралды 22 М.
nDCG: the evaluation metric you've (probably) never heard of
8:16
Trends in Recommendation & Personalization at Netflix
32:00
Scale AI
Рет қаралды 29 М.
Speculations on Test-Time Scaling (o1)
47:56
Sasha Rush 🤗
Рет қаралды 24 М.
КОНЦЕРТЫ:  2 сезон | 1 выпуск | Камызяки
46:36
ТНТ Смотри еще!
Рет қаралды 3,7 МЛН