If you having trouble with step 2 have a look at kzbin.info/www/bejne/jnurhWudpMitqaM
@st1tch5257 жыл бұрын
I learned more in these four minutes than my college professor taught me in a week... THANK YOU!!!
@SemihFatihAdem8 жыл бұрын
i want to touch an important point of this algorithm. When u go inverse, you changing NEXT SUB numbers and ONLY in parenthesis. Look upper eq, sub again[ 11=1(6)+5 goes 5=11-1(6) ] and put eq in the parenthesis. 1 = 6 - 1(5) --->> 1 = 6 - 1( 11-1(6) ) distrubute ( - ) and simplify 1= 6 - 11 + (6) -->> 1= 2(6)-11
@ameliasaidwhat9 жыл бұрын
Short and sweet, very helpful video. Never learned this exactly in class just the definition so this was great.
@TayoEXE6 жыл бұрын
I still don't quite understand what the gcd has to do with finding the modular inverse, but I have been racking my brains for hours now trying to understand this, and you're the only one who gave a nice concise answer and helped me with my homework, so thank you.
@RandellHeyman6 жыл бұрын
Glad it helped.
@yann84425 жыл бұрын
My whole class is thanking you for the explanations!
@RandellHeyman5 жыл бұрын
Glad it helped. I have other related videos...modular arithmetic made easy, modular exponentiation made easy, euler's theorem made easy, fermat's little theorem made easy and RSA code made easy.
@MC-Minority Жыл бұрын
0:44 3000 = 15(197) + 45 3000 div 197 = 15 3000 mod 197 = 3000 - (197 *15) = 45 2:05 Left side of video 6 = 1(5) + 1 (solve for 1) 6 -1(5) = 1 1 = 6 - 1(5) (just switched sides, now it looks like the top right) Now get rid of the 5 from this equation So we work with the 2nd last equation on the left side 11 = 1(6) + 5 5 = 11 - 1(6) Now plug into [5 = 11 - 1(6)] into [1 = 6 - 1(5)] 1 = 6 - 1(5) 1 = 6 - 1(-1(6) +11) 1 = 6 +6 - 11 1 = 2(6) - 11 Repeat the process one more time Use the 3rd last equation on the left side and isolate 6 17 = 1(11) + 6 17 - 1(11) = 6 6 = 17 - 1(11) [re-expressed the equation] Plug [6 = 17 - 1(11) ] into the 2nd equation on the right side [1 = 2(6) - 11 ] 1 = 2(6) - 11 1 = 2(17 -1(11)) - 11 1 = 2(17) -2(11) - 11 let a = 11 1 = 2(17) -2a - a 1 = 2(17) -3a 1 = 2(17) - 3(11) Hopefully, that helps, that was too much mental arithmetic going on for me 🤣😭
@michaelcoughlan77578 жыл бұрын
By far the easiest tutorial to follow! Thanks a million!
@RandellHeyman8 жыл бұрын
+Michael Liam Coughlan Glad it helped.
@thomasgardner8382 жыл бұрын
Hi Michael, weird question but wondering what you are doing now five years later?
@michaelcoughlan77572 жыл бұрын
Hi @@thomasgardner838 I'm contracting as a software engineer :)
@tombardier3 жыл бұрын
Thank you. I've been running through these procedures, just with no actual intuition for them. I feel like I have a bit more insight now!
@RandellHeyman3 жыл бұрын
Great. Thanks for letting me know.
@johallyw38 жыл бұрын
Really well explained and easy to understand!
@tosscoin22063 жыл бұрын
Incredibly helpful. Thank you
@DaveandEm20006 жыл бұрын
Again, thanks for making these videos. Much easier to understand than my textbook.
@RandellHeyman6 жыл бұрын
Thanks for the positive feedback. Glad it made is easier for you.
@snake1625b9 жыл бұрын
so if the GCD of two numbers is not 1 then there is no multiplicative inverse
@RandellHeyman9 жыл бұрын
John Fernandez That is correct. Well done on working that out from the video :)
@mage1over1379 жыл бұрын
John Fernandez Welcome to fascinating world of Ring.
@snake1625b9 жыл бұрын
mage davee what are rings in a nutshell
@mage1over1379 жыл бұрын
John Fernandez Are you Familiar with Groups, and if yes what about Fields?
@lethargicastengah5729 жыл бұрын
+mage davee I am. Continue?
@nikhilmadaan297 жыл бұрын
Thanks for the effort. Much appreciated!!
@ravishkumar84223 жыл бұрын
thanks for the video, there are many videos on this topic but your video is the easiest one to grab, nice explanation.
@RandellHeyman3 жыл бұрын
Thanks.
@bulat32267 жыл бұрын
Great tutorial, Thank You!
@AmolGautam5 жыл бұрын
Holy shit dude. You are a fucking genius , never thought there was an algorithm to calculate the modular inverse for such a large number. Would have used 3 years ago to simplify cryptographic calculation. but yeah , i can use it now as well.
@RandellHeyman5 жыл бұрын
I'd be a genius if I'd worked it worked it out first. But Euler largely gets the credit, not me.
@melissamarlen10222 жыл бұрын
Wow thank you so much! Great Video!!
@RandellHeyman2 жыл бұрын
Thanks.
@eatfruitsalad3455 жыл бұрын
This isn't working for me for some reason. I'm trying to find the inverse of 5 (mod 16) which using Euclid's becomes 16 = 3(5) + 1. The actual inverse is 13 but I don't see how to get 13 from that.
@eatfruitsalad3455 жыл бұрын
Actually, I figured it out. When on the second step you get 1 = 16 + (-3)(5), which means that the inverse is -3, or 13. Thanks for the video!
@RandellHeyman5 жыл бұрын
Glad you worked it out. It's a common mistake to get thrown by a negative. Other related videos on modular arithmetic, modular exponentiation, fermat's little theorem, Euler's theorem and RSA code on my channel.
@christiancoder4543 жыл бұрын
Wonderful explanation. Thank you for your time and help!
@RandellHeyman3 жыл бұрын
I've got lots of related videos (eg modular exponentiation made easy, Chinese remainder theorem made easy) on my channel.
@The_Patbey4 жыл бұрын
Thanks, great video even in 2020!
@RandellHeyman4 жыл бұрын
Thanks for the positive feedback. Interestingly, for quite old videos, my views seem to be increasing this year.
@thatsthething32183 жыл бұрын
Why the hell it is not explained in detail at university? Glad saw this.
@sandraa1234 Жыл бұрын
Why did my teacher just skip to teach this bit? Thank you for a good video.
@RandellHeyman Жыл бұрын
Glad it was helpful!
@cupoftea61968 жыл бұрын
this made so much sense!!! thank you!
@SaiBharatBatchu7 жыл бұрын
This one video made me to subscribe to your channel :)
@lalwho9 жыл бұрын
beautifully explained...
@91099Babar8 жыл бұрын
You have done a mistake on the 3rd Step of Extended Euclidean GCD Solution .... it is not -3(11) ... The Step is as follows : Equation available : 1 = 2X6 - 1X11 Step 3 to sub : 6 =17 -1X11 1 = 2X( 17 - 1X11 ) - 1X11 . Now Simplify : 1 = 2X17 - 1X11 - 1X11 1 = 2X17 - 2 X 11 .....How come - 3X11 get in your 3rd Step ???
@Enceptics10 жыл бұрын
Very helpful, as always!
@RandellHeyman10 жыл бұрын
Thanks for the feedback; much appreciated.
@snoopdogg736310 жыл бұрын
Randell Heyman Are you able to do/explain the CORDIC algorithm? I've always wondered how calculators can compute sin/cos/tan;
@RandellHeyman10 жыл бұрын
snoop dogg The usual method for explaining how calculators do trigonometry is that they use Taylor series. I explain this in the video Taylor series made easy. But I think you are correct is saying that small calculators actually use something like the Cordic algorithm.
@JonathanSebastianS9 ай бұрын
I wanna ask for the term of gcd is one, is this term for two problems above or just for modular multiplicative invers?
@eduardoxenofonte40044 жыл бұрын
I didn't get step 2
@RandellHeyman4 жыл бұрын
Hi Eduardo, many people have asked me about this step over the years. I will try to upload a video explaining further this afternoon.
@RandellHeyman4 жыл бұрын
Hi again. Have a look at kzbin.info/www/bejne/jnurhWudpMitqaM
@lemonke81322 жыл бұрын
Am i missing something or does this simply not work for 4^-1 mod 999? You get 83(4) + 3, but 83 mod 3 is zero. The GCD of 4 and 999 is definitely one though.
@RandellHeyman2 жыл бұрын
999=249(4)+3 and then 4=1(3)+1. So gcd(999,4)=1.
@lemonke81322 жыл бұрын
@@RandellHeyman oh snap thanks
@shloksand29264 жыл бұрын
Thanks a lot man ....the video was excellent
@RandellHeyman4 жыл бұрын
Thanks. Lots of related videos in my university mathematics playlist, my corona help - discrete mathematics playlist and my corona help - euler's theorem playlist.
@shloksand29264 жыл бұрын
Just what I was looking for
@shloksand29264 жыл бұрын
Randell ,could u also add a proof of Fermats last theorem
@RandellHeyman4 жыл бұрын
@@shloksand2926 I have a video intro proof fermat's last theorem. I can do a bit more on elliptic curves and modular forms. That's about as far as I'll go.
@shloksand29264 жыл бұрын
Ok thx
@ahmedshokry796310 жыл бұрын
Really Helpful ! thanks alot
@AnanthiRamasamy8 жыл бұрын
A Great Video :) Thanks a lot for sharing
@alexanderhamilton354 жыл бұрын
Why is there no inverse if the gcd isn’t 1? I’m fairly new to modular arithmetic, any explanation would be appreciated :P
@RandellHeyman4 жыл бұрын
I'll try to upload a video on thjs question in the next 24 hours.
@simonarcher44455 жыл бұрын
Thanks a bunch.
@floatingyunsan3 жыл бұрын
How do I substitute?
@RandellHeyman3 жыл бұрын
See my pinned comment.
@cindylee62494 жыл бұрын
Thank you so much! but what if the former number is bigger than the latter number? like 135 mod 61, thanks!
@RandellHeyman4 жыл бұрын
Hi, I'll upload an explanation video in the next 5 minutes.
@cindylee62494 жыл бұрын
@@RandellHeyman thank you so much! I'm looking forward to it!
@gamedit29993 жыл бұрын
Here is the video about it: kzbin.info/www/bejne/rZ_XomyeqKaVa5o
@intensiveadvancedmath52813 жыл бұрын
Thank you very much, that's usefull
@RandellHeyman3 жыл бұрын
Thanks for commenting.
@mohammedsamymohammedabdeln23043 жыл бұрын
that's pretty easy thanks alot
@kianpopat98294 жыл бұрын
Is it any different to find the multiplicative inverse of 3000 modulo 197, i get the wrong number when i try this with a bigger number modulo a smaller one
@eduardoxenofonte40044 жыл бұрын
you can't work outside the module, if its module 197 you can only work with 0-196
@Mayzaf147 жыл бұрын
Thank you SO much. :)
@RandellHeyman7 жыл бұрын
I'm glad it helped.
@abraxzus18765 жыл бұрын
Hi, If it were (197)^-2 instead how would this change? Would it just be solve : 197^2 * d = 1 mod 3000 ?
@RandellHeyman5 жыл бұрын
Yes. Then you would use the fact that 197^2 = 2809 modulo 3000. So now solve 2809 d = 1 modulo 3000.
@levibrian105 жыл бұрын
I FUCKING LOVE YOU.
@sagarakaraavan10 жыл бұрын
Thanks a lot mate...made my day...
@mkerm38755 жыл бұрын
i will just drop this here
@dcrock89782 жыл бұрын
2:25 you pointed at the wrong line, otherwise nice work
@RandellHeyman2 жыл бұрын
Thanks for pointing out the error in my pointing out.
@johnarchibald92023 жыл бұрын
THIS MAN IS MY SAVIOR
@RandellHeyman3 жыл бұрын
Good to know :)
@georges.1544 жыл бұрын
how are the expressions 1=(triple equation) 533(197)(mod3000) and 197d=1mod3000 the same???? That's what I don't understand. 1mod3000 is just 1. Not 197*533
@RandellHeyman4 жыл бұрын
When I write 197d = 1 mod 3000 I really should have written 197d=1 (mod 3000). And also they should have a three line `equal sign' not the normal two lines. But what this means is that 197d is equal to a number that has a remainder of 1 when divided by 3000. If 197d=1 (mod 3000) and 197(533)=1 (mod 3000) then the value of d between 1 and 3000 is 533. Hope that helps.
@luistan74298 жыл бұрын
Hello, I'm trying to find the modular inverse of 7 mod 120 and I get 17 which is I think wrong. I think it should be 103. But using the extended eucledian algorithm, I get 17. Is that correct?
@RandellHeyman8 жыл бұрын
It is easy to check if either is correct. 7 x 17 is equivalent to -1 mod 120. So 17 is not the inverse. On the other hand 7 x 103 = 721 = 1 mod 120. So the answer is 103. You must be doing something wrong with the extended Euclidean algorithm. Hope that helps.
@Alexander25i10 жыл бұрын
Thanks a lot!
@dg65464 жыл бұрын
extended euclidean algorithm
@RandellHeyman4 жыл бұрын
See my video I uploaded 1 hr ago
@andyjiao31148 жыл бұрын
Is 533 the only answer?
@RandellHeyman8 жыл бұрын
Any number that is equivalent to 533 modulo 3000 is a valid inverse. For example, 3533 times 197 = 696001 which is equivalent to 1 modulo 3000.
@andyjiao31148 жыл бұрын
+Randell Heyman Thanks
@91099Babar8 жыл бұрын
You have done a mistake on the 3rd Step of Extended Euclidean GCD Solution .... it is not -3(11) ... The Step is as follows : Equation available : 1 = 2X6 - 1X11 Step 3 to sub : 6 =17 -1X11 1 = 2X( 17 - 1X11 ) - 1X11 . Now Simplify : 1 = 2X17 - 1X11 - 1X11 1 = 2X17 - 2 X 11 .....How come - 3X11 get in your 3rd Step ???
@larubiano03 жыл бұрын
Thank you dude
@RandellHeyman3 жыл бұрын
Thanks for letting me know.
@ayepyone739810 жыл бұрын
Nice explanation
@karlchami47404 жыл бұрын
substitute this to that to this to that to that to this like be clearer!!!!
@sadimannan72487 жыл бұрын
Awesome
@Summer2monsoon10 жыл бұрын
u are too good loved ur video hats off :)
@parvbhardwaj91888 жыл бұрын
great!!
@okoyemildred87203 жыл бұрын
This wasn't made easy at all...the part after Euclid's alogrithm 😭😭 please help me
@okoyemildred87203 жыл бұрын
Oh... don't worry, I've seen the other video 😊
@RandellHeyman3 жыл бұрын
@@okoyemildred8720 Great. Any further problems...let me know.
@okoyemildred87203 жыл бұрын
@@RandellHeyman i will...thank you so much, you've been of much help to me and my brothers💙
@nathwhite511910 жыл бұрын
thanks!
@haniakhalidshariff45733 жыл бұрын
I DIDNT GET PART 2
@RandellHeyman3 жыл бұрын
Have a look at my video Euclid's algorithm made easy. If you still have problems comment again.
@cs2c_gabardaangelob.882 жыл бұрын
thank youu i get it noww,
@RandellHeyman2 жыл бұрын
Great. Thanks for commenting.
@nBodyResearch Жыл бұрын
im sorry lol but how can anyone say this is a good explanation?? he just says substitute this line with this line?? like which part do i substitute with what lol
@RandellHeyman Жыл бұрын
Sorry you couldn't understand. There are of course other videos that might be better for you. Otherwise.... You are probably getting stuck around the 2 min mark. On the right hand side I show my workings to express 1 as the difference between multiples of 3000 and 197. From the last line on the left I have 6=1(5)+1. This means that 1=6-1(5). So I write that on the right. Now I want to get rid of that multiple of 5. To do that I look at the second last line on the left. This is 11=1(6)+5. This means that 5=11-1(6). So I can replace 5 in the first line on the right with 11-1(6). So then I get 1=6-1(11-1(6)). This means 1=2(6)-1(11), which is 2nd line on the right. Next I want to replace 2(6). To do this I use the 3rd last line on the left. This continues until I get to the last line on the right side.
@nBodyResearch Жыл бұрын
@@RandellHeyman ahhh cool, thanks
@91099Babar8 жыл бұрын
You have done a mistake on the 3rd Step of Extended Euclidean GCD Solution .... it is not -3(11) ... The Step is as follows : Equation available : 1 = 2X6 - 1X11 Step 3 to sub : 6 =17 -1X11 1 = 2X( 17 - 1X11 ) - 1X11 . Now Simplify : 1 = 2X17 - 1X11 - 1X11 1 = 2X17 - 2 X 11 .....How come - 3X11 get in your 3rd Step ???
@RandellHeyman8 жыл бұрын
In the second line you should have 1 = 2x17-2x11-1x11.:)
@91099Babar8 жыл бұрын
Randell Heyman Ty very much ,few moments later I had corrected as I reviewed the steps .
@randallhale77753 жыл бұрын
Hey man
@cristianmalvaro33628 жыл бұрын
worst method, doesnt work with big numbers
@RandellHeyman8 жыл бұрын
+cristianm alvaro Sorry I don't understand your comment. This method will work for big numbers.
@hearts33d4 жыл бұрын
paaaaiiiiiiiiiiiiiiiiiiiiiin
@RandellHeyman4 жыл бұрын
Watch my other video modular arithmetic made easy and the paaiin should subside a little.
@pratikmehta62075 жыл бұрын
on google (1/197)mod3000 is something like .... 0.00507614213 ...ur ans is like 533... what is correct thing..
@RandellHeyman5 жыл бұрын
I think Google has just given you the answer in decimal form that you would work out in lower higher school....nothing to do with modular arithmetic.