Modular inverse made easy

  Рет қаралды 239,467

RH

RH

Күн бұрын

Пікірлер: 149
@RandellHeyman
@RandellHeyman 4 жыл бұрын
If you having trouble with step 2 have a look at kzbin.info/www/bejne/jnurhWudpMitqaM
@st1tch525
@st1tch525 7 жыл бұрын
I learned more in these four minutes than my college professor taught me in a week... THANK YOU!!!
@SemihFatihAdem
@SemihFatihAdem 8 жыл бұрын
i want to touch an important point of this algorithm. When u go inverse, you changing NEXT SUB numbers and ONLY in parenthesis. Look upper eq, sub again[ 11=1(6)+5 goes 5=11-1(6) ] and put eq in the parenthesis. 1 = 6 - 1(5) --->> 1 = 6 - 1( 11-1(6) ) distrubute ( - ) and simplify 1= 6 - 11 + (6) -->> 1= 2(6)-11
@ameliasaidwhat
@ameliasaidwhat 9 жыл бұрын
Short and sweet, very helpful video. Never learned this exactly in class just the definition so this was great.
@TayoEXE
@TayoEXE 6 жыл бұрын
I still don't quite understand what the gcd has to do with finding the modular inverse, but I have been racking my brains for hours now trying to understand this, and you're the only one who gave a nice concise answer and helped me with my homework, so thank you.
@RandellHeyman
@RandellHeyman 6 жыл бұрын
Glad it helped.
@yann8442
@yann8442 5 жыл бұрын
My whole class is thanking you for the explanations!
@RandellHeyman
@RandellHeyman 5 жыл бұрын
Glad it helped. I have other related videos...modular arithmetic made easy, modular exponentiation made easy, euler's theorem made easy, fermat's little theorem made easy and RSA code made easy.
@MC-Minority
@MC-Minority Жыл бұрын
0:44 3000 = 15(197) + 45 3000 div 197 = 15 3000 mod 197 = 3000 - (197 *15) = 45 2:05 Left side of video 6 = 1(5) + 1 (solve for 1) 6 -1(5) = 1 1 = 6 - 1(5) (just switched sides, now it looks like the top right) Now get rid of the 5 from this equation So we work with the 2nd last equation on the left side 11 = 1(6) + 5 5 = 11 - 1(6) Now plug into [5 = 11 - 1(6)] into [1 = 6 - 1(5)] 1 = 6 - 1(5) 1 = 6 - 1(-1(6) +11) 1 = 6 +6 - 11 1 = 2(6) - 11 Repeat the process one more time Use the 3rd last equation on the left side and isolate 6 17 = 1(11) + 6 17 - 1(11) = 6 6 = 17 - 1(11) [re-expressed the equation] Plug [6 = 17 - 1(11) ] into the 2nd equation on the right side [1 = 2(6) - 11 ] 1 = 2(6) - 11 1 = 2(17 -1(11)) - 11 1 = 2(17) -2(11) - 11 let a = 11 1 = 2(17) -2a - a 1 = 2(17) -3a 1 = 2(17) - 3(11) Hopefully, that helps, that was too much mental arithmetic going on for me 🤣😭
@michaelcoughlan7757
@michaelcoughlan7757 8 жыл бұрын
By far the easiest tutorial to follow! Thanks a million!
@RandellHeyman
@RandellHeyman 8 жыл бұрын
+Michael Liam Coughlan Glad it helped.
@thomasgardner838
@thomasgardner838 2 жыл бұрын
Hi Michael, weird question but wondering what you are doing now five years later?
@michaelcoughlan7757
@michaelcoughlan7757 2 жыл бұрын
Hi @@thomasgardner838 I'm contracting as a software engineer :)
@tombardier
@tombardier 3 жыл бұрын
Thank you. I've been running through these procedures, just with no actual intuition for them. I feel like I have a bit more insight now!
@RandellHeyman
@RandellHeyman 3 жыл бұрын
Great. Thanks for letting me know.
@johallyw3
@johallyw3 8 жыл бұрын
Really well explained and easy to understand!
@tosscoin2206
@tosscoin2206 3 жыл бұрын
Incredibly helpful. Thank you
@DaveandEm2000
@DaveandEm2000 6 жыл бұрын
Again, thanks for making these videos. Much easier to understand than my textbook.
@RandellHeyman
@RandellHeyman 6 жыл бұрын
Thanks for the positive feedback. Glad it made is easier for you.
@snake1625b
@snake1625b 9 жыл бұрын
so if the GCD of two numbers is not 1 then there is no multiplicative inverse
@RandellHeyman
@RandellHeyman 9 жыл бұрын
John Fernandez That is correct. Well done on working that out from the video :)
@mage1over137
@mage1over137 9 жыл бұрын
John Fernandez Welcome to fascinating world of Ring.
@snake1625b
@snake1625b 9 жыл бұрын
mage davee what are rings in a nutshell
@mage1over137
@mage1over137 9 жыл бұрын
John Fernandez Are you Familiar with Groups, and if yes what about Fields?
@lethargicastengah572
@lethargicastengah572 9 жыл бұрын
+mage davee I am. Continue?
@nikhilmadaan29
@nikhilmadaan29 7 жыл бұрын
Thanks for the effort. Much appreciated!!
@ravishkumar8422
@ravishkumar8422 3 жыл бұрын
thanks for the video, there are many videos on this topic but your video is the easiest one to grab, nice explanation.
@RandellHeyman
@RandellHeyman 3 жыл бұрын
Thanks.
@bulat3226
@bulat3226 7 жыл бұрын
Great tutorial, Thank You!
@AmolGautam
@AmolGautam 5 жыл бұрын
Holy shit dude. You are a fucking genius , never thought there was an algorithm to calculate the modular inverse for such a large number. Would have used 3 years ago to simplify cryptographic calculation. but yeah , i can use it now as well.
@RandellHeyman
@RandellHeyman 5 жыл бұрын
I'd be a genius if I'd worked it worked it out first. But Euler largely gets the credit, not me.
@melissamarlen1022
@melissamarlen1022 2 жыл бұрын
Wow thank you so much! Great Video!!
@RandellHeyman
@RandellHeyman 2 жыл бұрын
Thanks.
@eatfruitsalad345
@eatfruitsalad345 5 жыл бұрын
This isn't working for me for some reason. I'm trying to find the inverse of 5 (mod 16) which using Euclid's becomes 16 = 3(5) + 1. The actual inverse is 13 but I don't see how to get 13 from that.
@eatfruitsalad345
@eatfruitsalad345 5 жыл бұрын
Actually, I figured it out. When on the second step you get 1 = 16 + (-3)(5), which means that the inverse is -3, or 13. Thanks for the video!
@RandellHeyman
@RandellHeyman 5 жыл бұрын
Glad you worked it out. It's a common mistake to get thrown by a negative. Other related videos on modular arithmetic, modular exponentiation, fermat's little theorem, Euler's theorem and RSA code on my channel.
@christiancoder454
@christiancoder454 3 жыл бұрын
Wonderful explanation. Thank you for your time and help!
@RandellHeyman
@RandellHeyman 3 жыл бұрын
I've got lots of related videos (eg modular exponentiation made easy, Chinese remainder theorem made easy) on my channel.
@The_Patbey
@The_Patbey 4 жыл бұрын
Thanks, great video even in 2020!
@RandellHeyman
@RandellHeyman 4 жыл бұрын
Thanks for the positive feedback. Interestingly, for quite old videos, my views seem to be increasing this year.
@thatsthething3218
@thatsthething3218 3 жыл бұрын
Why the hell it is not explained in detail at university? Glad saw this.
@sandraa1234
@sandraa1234 Жыл бұрын
Why did my teacher just skip to teach this bit? Thank you for a good video.
@RandellHeyman
@RandellHeyman Жыл бұрын
Glad it was helpful!
@cupoftea6196
@cupoftea6196 8 жыл бұрын
this made so much sense!!! thank you!
@SaiBharatBatchu
@SaiBharatBatchu 7 жыл бұрын
This one video made me to subscribe to your channel :)
@lalwho
@lalwho 9 жыл бұрын
beautifully explained...
@91099Babar
@91099Babar 8 жыл бұрын
You have done a mistake on the 3rd Step of Extended Euclidean GCD Solution .... it is not -3(11) ... The Step is as follows : Equation available : 1 = 2X6 - 1X11 Step 3 to sub : 6 =17 -1X11 1 = 2X( 17 - 1X11 ) - 1X11 . Now Simplify : 1 = 2X17 - 1X11 - 1X11 1 = 2X17 - 2 X 11 .....How come - 3X11 get in your 3rd Step ???
@Enceptics
@Enceptics 10 жыл бұрын
Very helpful, as always!
@RandellHeyman
@RandellHeyman 10 жыл бұрын
Thanks for the feedback; much appreciated.
@snoopdogg7363
@snoopdogg7363 10 жыл бұрын
Randell Heyman Are you able to do/explain the CORDIC algorithm? I've always wondered how calculators can compute sin/cos/tan;
@RandellHeyman
@RandellHeyman 10 жыл бұрын
snoop dogg The usual method for explaining how calculators do trigonometry is that they use Taylor series. I explain this in the video Taylor series made easy. But I think you are correct is saying that small calculators actually use something like the Cordic algorithm.
@JonathanSebastianS
@JonathanSebastianS 9 ай бұрын
I wanna ask for the term of gcd is one, is this term for two problems above or just for modular multiplicative invers?
@eduardoxenofonte4004
@eduardoxenofonte4004 4 жыл бұрын
I didn't get step 2
@RandellHeyman
@RandellHeyman 4 жыл бұрын
Hi Eduardo, many people have asked me about this step over the years. I will try to upload a video explaining further this afternoon.
@RandellHeyman
@RandellHeyman 4 жыл бұрын
Hi again. Have a look at kzbin.info/www/bejne/jnurhWudpMitqaM
@lemonke8132
@lemonke8132 2 жыл бұрын
Am i missing something or does this simply not work for 4^-1 mod 999? You get 83(4) + 3, but 83 mod 3 is zero. The GCD of 4 and 999 is definitely one though.
@RandellHeyman
@RandellHeyman 2 жыл бұрын
999=249(4)+3 and then 4=1(3)+1. So gcd(999,4)=1.
@lemonke8132
@lemonke8132 2 жыл бұрын
@@RandellHeyman oh snap thanks
@shloksand2926
@shloksand2926 4 жыл бұрын
Thanks a lot man ....the video was excellent
@RandellHeyman
@RandellHeyman 4 жыл бұрын
Thanks. Lots of related videos in my university mathematics playlist, my corona help - discrete mathematics playlist and my corona help - euler's theorem playlist.
@shloksand2926
@shloksand2926 4 жыл бұрын
Just what I was looking for
@shloksand2926
@shloksand2926 4 жыл бұрын
Randell ,could u also add a proof of Fermats last theorem
@RandellHeyman
@RandellHeyman 4 жыл бұрын
@@shloksand2926 I have a video intro proof fermat's last theorem. I can do a bit more on elliptic curves and modular forms. That's about as far as I'll go.
@shloksand2926
@shloksand2926 4 жыл бұрын
Ok thx
@ahmedshokry7963
@ahmedshokry7963 10 жыл бұрын
Really Helpful ! thanks alot
@AnanthiRamasamy
@AnanthiRamasamy 8 жыл бұрын
A Great Video :) Thanks a lot for sharing
@alexanderhamilton35
@alexanderhamilton35 4 жыл бұрын
Why is there no inverse if the gcd isn’t 1? I’m fairly new to modular arithmetic, any explanation would be appreciated :P
@RandellHeyman
@RandellHeyman 4 жыл бұрын
I'll try to upload a video on thjs question in the next 24 hours.
@simonarcher4445
@simonarcher4445 5 жыл бұрын
Thanks a bunch.
@floatingyunsan
@floatingyunsan 3 жыл бұрын
How do I substitute?
@RandellHeyman
@RandellHeyman 3 жыл бұрын
See my pinned comment.
@cindylee6249
@cindylee6249 4 жыл бұрын
Thank you so much! but what if the former number is bigger than the latter number? like 135 mod 61, thanks!
@RandellHeyman
@RandellHeyman 4 жыл бұрын
Hi, I'll upload an explanation video in the next 5 minutes.
@cindylee6249
@cindylee6249 4 жыл бұрын
@@RandellHeyman thank you so much! I'm looking forward to it!
@gamedit2999
@gamedit2999 3 жыл бұрын
Here is the video about it: kzbin.info/www/bejne/rZ_XomyeqKaVa5o
@intensiveadvancedmath5281
@intensiveadvancedmath5281 3 жыл бұрын
Thank you very much, that's usefull
@RandellHeyman
@RandellHeyman 3 жыл бұрын
Thanks for commenting.
@mohammedsamymohammedabdeln2304
@mohammedsamymohammedabdeln2304 3 жыл бұрын
that's pretty easy thanks alot
@kianpopat9829
@kianpopat9829 4 жыл бұрын
Is it any different to find the multiplicative inverse of 3000 modulo 197, i get the wrong number when i try this with a bigger number modulo a smaller one
@eduardoxenofonte4004
@eduardoxenofonte4004 4 жыл бұрын
you can't work outside the module, if its module 197 you can only work with 0-196
@Mayzaf14
@Mayzaf14 7 жыл бұрын
Thank you SO much. :)
@RandellHeyman
@RandellHeyman 7 жыл бұрын
I'm glad it helped.
@abraxzus1876
@abraxzus1876 5 жыл бұрын
Hi, If it were (197)^-2 instead how would this change? Would it just be solve : 197^2 * d = 1 mod 3000 ?
@RandellHeyman
@RandellHeyman 5 жыл бұрын
Yes. Then you would use the fact that 197^2 = 2809 modulo 3000. So now solve 2809 d = 1 modulo 3000.
@levibrian10
@levibrian10 5 жыл бұрын
I FUCKING LOVE YOU.
@sagarakaraavan
@sagarakaraavan 10 жыл бұрын
Thanks a lot mate...made my day...
@mkerm3875
@mkerm3875 5 жыл бұрын
i will just drop this here
@dcrock8978
@dcrock8978 2 жыл бұрын
2:25 you pointed at the wrong line, otherwise nice work
@RandellHeyman
@RandellHeyman 2 жыл бұрын
Thanks for pointing out the error in my pointing out.
@johnarchibald9202
@johnarchibald9202 3 жыл бұрын
THIS MAN IS MY SAVIOR
@RandellHeyman
@RandellHeyman 3 жыл бұрын
Good to know :)
@georges.154
@georges.154 4 жыл бұрын
how are the expressions 1=(triple equation) 533(197)(mod3000) and 197d=1mod3000 the same???? That's what I don't understand. 1mod3000 is just 1. Not 197*533
@RandellHeyman
@RandellHeyman 4 жыл бұрын
When I write 197d = 1 mod 3000 I really should have written 197d=1 (mod 3000). And also they should have a three line `equal sign' not the normal two lines. But what this means is that 197d is equal to a number that has a remainder of 1 when divided by 3000. If 197d=1 (mod 3000) and 197(533)=1 (mod 3000) then the value of d between 1 and 3000 is 533. Hope that helps.
@luistan7429
@luistan7429 8 жыл бұрын
Hello, I'm trying to find the modular inverse of 7 mod 120 and I get 17 which is I think wrong. I think it should be 103. But using the extended eucledian algorithm, I get 17. Is that correct?
@RandellHeyman
@RandellHeyman 8 жыл бұрын
It is easy to check if either is correct. 7 x 17 is equivalent to -1 mod 120. So 17 is not the inverse. On the other hand 7 x 103 = 721 = 1 mod 120. So the answer is 103. You must be doing something wrong with the extended Euclidean algorithm. Hope that helps.
@Alexander25i
@Alexander25i 10 жыл бұрын
Thanks a lot!
@dg6546
@dg6546 4 жыл бұрын
extended euclidean algorithm
@RandellHeyman
@RandellHeyman 4 жыл бұрын
See my video I uploaded 1 hr ago
@andyjiao3114
@andyjiao3114 8 жыл бұрын
Is 533 the only answer?
@RandellHeyman
@RandellHeyman 8 жыл бұрын
Any number that is equivalent to 533 modulo 3000 is a valid inverse. For example, 3533 times 197 = 696001 which is equivalent to 1 modulo 3000.
@andyjiao3114
@andyjiao3114 8 жыл бұрын
+Randell Heyman Thanks
@91099Babar
@91099Babar 8 жыл бұрын
You have done a mistake on the 3rd Step of Extended Euclidean GCD Solution .... it is not -3(11) ... The Step is as follows : Equation available : 1 = 2X6 - 1X11 Step 3 to sub : 6 =17 -1X11 1 = 2X( 17 - 1X11 ) - 1X11 . Now Simplify : 1 = 2X17 - 1X11 - 1X11 1 = 2X17 - 2 X 11 .....How come - 3X11 get in your 3rd Step ???
@larubiano0
@larubiano0 3 жыл бұрын
Thank you dude
@RandellHeyman
@RandellHeyman 3 жыл бұрын
Thanks for letting me know.
@ayepyone7398
@ayepyone7398 10 жыл бұрын
Nice explanation
@karlchami4740
@karlchami4740 4 жыл бұрын
substitute this to that to this to that to that to this like be clearer!!!!
@sadimannan7248
@sadimannan7248 7 жыл бұрын
Awesome
@Summer2monsoon
@Summer2monsoon 10 жыл бұрын
u are too good loved ur video hats off :)
@parvbhardwaj9188
@parvbhardwaj9188 8 жыл бұрын
great!!
@okoyemildred8720
@okoyemildred8720 3 жыл бұрын
This wasn't made easy at all...the part after Euclid's alogrithm 😭😭 please help me
@okoyemildred8720
@okoyemildred8720 3 жыл бұрын
Oh... don't worry, I've seen the other video 😊
@RandellHeyman
@RandellHeyman 3 жыл бұрын
@@okoyemildred8720 Great. Any further problems...let me know.
@okoyemildred8720
@okoyemildred8720 3 жыл бұрын
@@RandellHeyman i will...thank you so much, you've been of much help to me and my brothers💙
@nathwhite5119
@nathwhite5119 10 жыл бұрын
thanks!
@haniakhalidshariff4573
@haniakhalidshariff4573 3 жыл бұрын
I DIDNT GET PART 2
@RandellHeyman
@RandellHeyman 3 жыл бұрын
Have a look at my video Euclid's algorithm made easy. If you still have problems comment again.
@cs2c_gabardaangelob.88
@cs2c_gabardaangelob.88 2 жыл бұрын
thank youu i get it noww,
@RandellHeyman
@RandellHeyman 2 жыл бұрын
Great. Thanks for commenting.
@nBodyResearch
@nBodyResearch Жыл бұрын
im sorry lol but how can anyone say this is a good explanation?? he just says substitute this line with this line?? like which part do i substitute with what lol
@RandellHeyman
@RandellHeyman Жыл бұрын
Sorry you couldn't understand. There are of course other videos that might be better for you. Otherwise.... You are probably getting stuck around the 2 min mark. On the right hand side I show my workings to express 1 as the difference between multiples of 3000 and 197. From the last line on the left I have 6=1(5)+1. This means that 1=6-1(5). So I write that on the right. Now I want to get rid of that multiple of 5. To do that I look at the second last line on the left. This is 11=1(6)+5. This means that 5=11-1(6). So I can replace 5 in the first line on the right with 11-1(6). So then I get 1=6-1(11-1(6)). This means 1=2(6)-1(11), which is 2nd line on the right. Next I want to replace 2(6). To do this I use the 3rd last line on the left. This continues until I get to the last line on the right side.
@nBodyResearch
@nBodyResearch Жыл бұрын
@@RandellHeyman ahhh cool, thanks
@91099Babar
@91099Babar 8 жыл бұрын
You have done a mistake on the 3rd Step of Extended Euclidean GCD Solution .... it is not -3(11) ... The Step is as follows : Equation available : 1 = 2X6 - 1X11 Step 3 to sub : 6 =17 -1X11 1 = 2X( 17 - 1X11 ) - 1X11 . Now Simplify : 1 = 2X17 - 1X11 - 1X11 1 = 2X17 - 2 X 11 .....How come - 3X11 get in your 3rd Step ???
@RandellHeyman
@RandellHeyman 8 жыл бұрын
In the second line you should have 1 = 2x17-2x11-1x11.:)
@91099Babar
@91099Babar 8 жыл бұрын
Randell Heyman Ty very much ,few moments later I had corrected as I reviewed the steps .
@randallhale7775
@randallhale7775 3 жыл бұрын
Hey man
@cristianmalvaro3362
@cristianmalvaro3362 8 жыл бұрын
worst method, doesnt work with big numbers
@RandellHeyman
@RandellHeyman 8 жыл бұрын
+cristianm alvaro Sorry I don't understand your comment. This method will work for big numbers.
@hearts33d
@hearts33d 4 жыл бұрын
paaaaiiiiiiiiiiiiiiiiiiiiiin
@RandellHeyman
@RandellHeyman 4 жыл бұрын
Watch my other video modular arithmetic made easy and the paaiin should subside a little.
@pratikmehta6207
@pratikmehta6207 5 жыл бұрын
on google (1/197)mod3000 is something like .... 0.00507614213 ...ur ans is like 533... what is correct thing..
@RandellHeyman
@RandellHeyman 5 жыл бұрын
I think Google has just given you the answer in decimal form that you would work out in lower higher school....nothing to do with modular arithmetic.
The modular inverse via Gauss not Euclid
13:18
Proof of Concept
Рет қаралды 2,5 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
Finding the Modular Inverse #numbertheory
8:11
Study Force
Рет қаралды 1,5 М.
Number Theory | Inverses modulo n
8:02
Michael Penn
Рет қаралды 46 М.
Modular arithmetic made easy
7:02
RH
Рет қаралды 75 М.
Computations Modulo P in Competitive Programming
18:15
Errichto Algorithms
Рет қаралды 129 М.
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
Modular exponentiation
11:37
GVSUmath
Рет қаралды 293 М.
What is 0 to the power of 0?
14:22
Eddie Woo
Рет қаралды 10 МЛН
How to Remember Everything You Read
26:12
Justin Sung
Рет қаралды 2,7 МЛН
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 475 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН