Every time I see some beautiful multivariable calculus like this I am in awe. These techniques really allow us to do hard stuff so easily...
@Jschlick1002 жыл бұрын
this aint easy man lmao
@tanzilaraushan16022 жыл бұрын
@@Jschlick100 felt
@a.nelprober49712 жыл бұрын
GOOD
@unclesam67643 жыл бұрын
I’m grateful for watching this video with such a lucid explanation. God Bless you sir
@gosports858622 күн бұрын
Not really trippin about the integral mistakes, especially since they were done at the top of your head. Just grateful for showing how to set up spherical from rectangular triple integrals! Thanks!
@avdrago71704 жыл бұрын
Cospi/6 = sqrt3/2, not 1/2
@rebucato31422 жыл бұрын
Pretty sure the answer is more complicated than that... The first integral evaluates to (4^5)/5 = 1024/5, not 2048/5 the second integral is fine The third integral evaluates to (1-sqrt(3)/2), not 1/2, as cos(pi/6) = sqrt(3)/2, not 1/2 The answer is 512pi/5*(1-sqrt(3)/2) Making mistakes on the blackboard is fine as long as they are corrected. However, I am shocked that there are no amendments to this video 2 years after it has been released. This shouldn't happen and I hope Penn can correct this so students would not be confused.
@alexalbors72132 жыл бұрын
Just realized the same thing
@scoobydoo355711 ай бұрын
Yeah ur right, but I think the process and the sketches are all correct
@rookiemvp20083 жыл бұрын
I hate calc 3.
@f.osborn157911 ай бұрын
I took multi variable calc and passed but it made no sense…this video is good though.
@davidsteiget4433Ай бұрын
Same and I thought it was supposedly the easiest of the sequence
@Endgator16 күн бұрын
@davidsteiget4433 the equations are easy, the conceptualization is what gets most people.
@noahifiv8 ай бұрын
Michael Penn has awesome teaching skills
@betramlalusha70603 жыл бұрын
I hope you are doing well and everything in your life is going great! Thank you for this! Wow!
@prathikkannan33244 ай бұрын
Exceptionally clear! Thanks Michael.
@maxyao47092 жыл бұрын
but how can the radius be 4 if y is bounded by [0,2]
@savangolakiya19265 ай бұрын
magic
@paulnokleberg51882 ай бұрын
The spherical portion of the volume is above the xy plane, so the y bounds don't define it. The x bounds initially limit theta to pi, a half circle, and the y bounds further limit theta to pi/2, a quarter circle. When you plot it on desmos, it's easier to see. Good question. I can see how that might be confusing at first. A picture is worth a thousand words in calc 3.😊
@Martin-iw1ll Жыл бұрын
I think it is necessary to check whether the top sphere actually touches the bottom cone, cause if i change the limits for y to from 0 to sqrt(1-y^2), then the answer would be very different and also 0
@seanfischler132011 ай бұрын
Thanks for the video! For some reason I had more success understanding you than my professor.
@userHamza7 ай бұрын
You explain this problem very smoothly
@Carusot3 ай бұрын
Consider the hot air balloon with equation 9x^2 +9y^2 +4z^2 = 100. The temperature in the hot air balloon is given by the following function: f(x,y,z) = 18x^2 + 18y^2 + 8z^2 − 20 • Convert the regular area into appropriate spherical coordinates. • Calculate the volume of the balloon. • Calculate the average temperature in the Balloon
@dalibormaksimovic63992 жыл бұрын
Hi. I am interested in how one can determine boundaries of integration when there is no a explicit function for z in terms of y, or y in terms of x. For instance, calculate the volume of body bounded by following surfaces: x^2+y^2 = cz, x^4+y^4=a^2(x^2+y^2) and z=0.
@dilsedhoni92292 жыл бұрын
Wonderfully explained
@sarykhalaf2 жыл бұрын
how to determine exactly what’s the equation is????
@katlegodonald243Ай бұрын
Thanks for this video ,it's appreciated.
@umalog1434 жыл бұрын
It is really nice sir
@walter90295 ай бұрын
Maybe somebody can help me out: I know you can see the bounds for theta on the board, but is there an algebraic way to derive them from the equations and the xyz bounds ?
@maxwellsoko98033 жыл бұрын
You're great Sjr
@james-md1cf Жыл бұрын
Very comprehensive problem
@majidrazavi94673 жыл бұрын
Excelant i realy enjoyed god bless you
@DhruvaDevaraaj11 ай бұрын
You are a legend
@thatthila2 жыл бұрын
Thank you :3. It's so niceee!
@f.r.y58576 ай бұрын
good job sir
@eulzzzz76829 ай бұрын
Cosine of π/6 is √3/2 14:25
@jaineshmachhi1982 жыл бұрын
Coolest way to end the video saying" Good now it's a good place to stop"😂😂
@yangfiona864911 ай бұрын
Thank you!
@mateja901 Жыл бұрын
Where can I find problems like this?
@moondrop32357 ай бұрын
If you're taking Calc 3, it's rather common. Probably learn it near the end after learning how to convert bounds to polar and cylindrical coordinates and during triple integration.
@ev4_gaming3 жыл бұрын
very helpful
@Laerteufv4 жыл бұрын
cos (pi/6)=(3^1/2)/2
@fredderf20682 жыл бұрын
True dat
@pingpongfulldh23084 жыл бұрын
Nice
@7_str_710 ай бұрын
Nice 👍
@yBazo823 жыл бұрын
quality
@alidaqa27384 ай бұрын
9:46 should be sqrt 6p^2 sin^2
@lopa7974 жыл бұрын
love you🤗
@unconscious56308 ай бұрын
4^5 is not 2048 and and cos(pi/6) is not 1/2
@EfirDop5 ай бұрын
❤❤❤❤❤
@noelani9764 жыл бұрын
4^5=1024 and not 2048
@elf_someone Жыл бұрын
لحسة مخ يارب فكني من الرياضيات
@endaleyohannes71063 жыл бұрын
cool
@ThAlEdison4 жыл бұрын
In this problem sqrt(16-x^2-y^2)=sqrt(3(x^2+y^2)) becomes x^2+y^2=4, which means that the intersection of the cone and sphere are at the same as the limits on the x-y plane, but if the bounds on x had been 0, sqrt(1-y^2), then you would've had a spherical section on top of a cylinder on top of a cone. I'm not 100% sure how I would convert the equation if that was the case. It may require changing it to two separate integrals, one where phi goes from 0 to csc^-1(4) and rho goes from 0 to 4, and a second where phi goes from csc^-1(4) to pi/6 and rho goes from 0 to csc(phi).
@darksoles13053 жыл бұрын
I know I'm late, but set the equations equal to each other and you will find the circle where they intersect