Has anyone counted the number of times that I said "right here"?
@martinr31675 жыл бұрын
import math print(math.floor(2*math.pi)) :v
@VibingMath5 жыл бұрын
Yes! Thank you for reminding! We can use this method to handle sinsin, sincos and coscos type integration
@alwaysuseless Жыл бұрын
The math is great, and verbally the presentation is good. The one big improvement you could make in presentation is to AVOID erasing. Just move down and then eventually over to the right. The camera can follow you.
@hudyakovnick7 ай бұрын
Shouldn't "+C" be in the previous step? It is when we get rid of the integral, and then later in the end we simply calculate.
@MuPrimeMath7 ай бұрын
Yes, there should be a +C in the penultimate step. I opted not to write it until the final answer because it doesn't affect the calculations.
@claireli885 жыл бұрын
We can do the same way for integration of product of two sines of different angles too.
@TheGiuse45 Жыл бұрын
I never use trigonometric formulas, I use complex numbers like a real OG
@ShanBojack Жыл бұрын
Can you elaborate
@TheGiuse45 Жыл бұрын
@@ShanBojack instead of remembering all the trig formulas you can derive them by using the equivalence e^(ix)= cos(x) + i*sin(x) with x a real number. you can use this to make the cosine or sine, for example cos(x)= (e^(ix) + e^(-ix))/2. you can derive any trig formula from this
@przemysawkwiatkowski26745 жыл бұрын
How would you do it with integration by parts?
@MuPrimeMath5 жыл бұрын
Choose one of the cosines to differentiate and one to integrate. After doing integration by parts twice, the resulting integral will be a constant multiple of the original. Then you can solve for the integral! This gives the result of b/(b^2-a^2)cos(ax)sin(bx) - a/(b^2-a^2)sin(ax)cos(bx) + C which is equivalent to the answer in the video.
@viktor-kolyadenko Жыл бұрын
a = b or a = -b (formally)?
@MuPrimeMath Жыл бұрын
Good point, those would be special cases!
@diegogallego93702 жыл бұрын
Thank you
@ArifSolvesIt Жыл бұрын
You could have presented a more complete solution by solving for the case a=b. You can still take the limit a goes to b in the final answer, but I think it is worth mentioning what happens when a=b.