Learn more calculus on Brilliant: 👉brilliant.org/blackpenredpen/ (now with a 30-day free trial plus 20% off with this link!)
@maxvangulik1988 Жыл бұрын
i like how the limits of integration are actual limits
@isavenewspapers88907 ай бұрын
I've always preferred the term "bounds of integration". I mean, considering that we're already using the word "limit" for something else in calculus, doesn't it make sense to use a different word here?
@prabhakarsingh68216 ай бұрын
@@isavenewspapers8890 using the word "bound" just makes so much sense....idk why most people don't call it that
@Elprofium Жыл бұрын
nothings better than solving an integral on Christmas's
@hanckNCR Жыл бұрын
its christmas?
@anadishrivastava4804 Жыл бұрын
Agreed
@michalkrawczak Жыл бұрын
@@hanckNCRit's always Christmas if you have integrals to solve
@Aaron_1112 Жыл бұрын
@@michalkrawczak😔
@aninditabasak7694 Жыл бұрын
And Christmas also happens to be the birthday of Newton, who invented calculus.
@trelosyiaellinika Жыл бұрын
I've graduated from a mathematical school and even went to Mathematics faculty at the university for a year before changing my mind and becoming a general surgeon... It was a very tough decision as there was no scientific material that didn't interest me at the time... But maths has always remained my love and mania and I've always benefited from the knowledge while creating various complex macros for my work... However, I had almost forgotten most of its juicy parts... It's been more than 36 years after all! Now, I am retired and very much enjoy your videos, remembering and solving them in parallel... It charges my batteries and gives me a sense of satisfaction like winning a chess match! Thank you very much! You are doing a great job!
@blackpenredpen Жыл бұрын
Thank you so much for the comment!
@chilli881 Жыл бұрын
Imagine checking your socks at early morning and finding a paper with this integral written and a message from Santa : "Integrate the above to receive gift"
@mchanc8 ай бұрын
well worry no longer my friend.
@satyam-isical Жыл бұрын
Every scary problem is not necessarily tough & Every tough problem isn't scary😊
@EyeSooGuy Жыл бұрын
😱(lol)
@the_llaw Жыл бұрын
Only thing scary is his face in the thumbnail 😂😂 but fr tho great video
@AdityaMishra-nd7cq Жыл бұрын
Is this KZbinr from China if yes then the china is my favorite country 😂
@d3generate804 Жыл бұрын
@@AdityaMishra-nd7cq he is a Taiwanese living in america
@lunam72499 ай бұрын
chuck norris says ..."hold my beer"
@cheerio662 Жыл бұрын
Been watching you for 2-3 years now as a highschool student and could finally solve on of your all-in-one questions by myself! Feels great to go from knowing nothing and just liking the magic numbers to solving something that looks scary (but really wasnt) all by my lonesome. Thank you for the content you provide!
@juxx9628 Жыл бұрын
Ok. Trying first before seeing the video. Step 1: Evaluate limits. On the bottom one, use L'Hopital rule and get (1/x)/(1/2√x). Simplify and get 0. The top one use L'Hopital rule to get (1/2√x)/(1/x). Simplify and it diverges. Step 2: Derivative. Just use the chain rule twice. f(y)= y² y(t)= sint t(x)= t² df/dx = df/dy • dy/dt • dt/dx = 2y • cost • 2t Recall the definitions of the variables: 2•2x•sinx•cosx Step 3: Power series. Recall the Maclaurin series for e^x, then put x² as the input. That easy. e^x². Step 4: The monster. The integral looks like 0-inf∫ 2•2x•sinx•cosx• e^-x² dx. Use substitution j=x², dj=2xdx (bounds of integration stays the same and we already have dj in the integral) =0-inf∫ 2•sinx•cosx•e^-j dj Recall doble angle formula for sinx and name the integral I: 0-inf∫ sin(2j)•e^-j dj = I Use IBP or DI method, just the same: D: + sin(2j) - 2cos(2j) + -4sin(2j) I: e^-j -e^-j e^-j After the setup, this ends like: I = (sin(2j)•e^-j)]0-inf + (2cos(2j)•e^-j)]inf-0 - 4I Notice that first term goes to 0 and in the second term I changed the bounds thanks to the minus sign. Now, in the second term, the limit as j approaches 0 is 2 and when j approaches infinity is just 0 thanks to the exponential and the squeeze theorem. So, finally: I = 2 - 4I 5I = 2 I = 2/5 Thanks for reading, love you.
@samueljehanno Жыл бұрын
Interesting
@cemsaglam9241 Жыл бұрын
i've just realized by reading your comment that IBP is short for "integration by parts"
@juxx9628 Жыл бұрын
@@cemsaglam9241 Yeah, it's a confusing way to write it. I first got confused because in spanish it is just simply despicted as integration by parts or "the cow" (la vaca) because of some mnemotecnic to remember IBP.
@valentinvanhees8690 Жыл бұрын
i really liked this!! my first really hard integral that i solved first try! would love to see more power series-integrals
@o_s-24 Жыл бұрын
All of calculus 2 summarized in 11mins. Awsome!
@xum0007 Жыл бұрын
I’m only a freshman so I’m taking algebra 2 honors right now. I must say this looks way harder than what I do in class right now (which is a pretty low standard) but if you’re interested in the subject it shouldn’t be too bad.
@matheusdossantos9252 Жыл бұрын
@@xum0007Algebra II also called "Linear Algebra"? After the diagonalization content it can get a little more complicated depending on your teacher.
@michellekagansbu8 ай бұрын
@@matheusdossantos9252 I don't think he means linear algebra
@MokshitArora. Жыл бұрын
That e^x² at the denominator was great . I was thinking it to be some different series and was thinking to use limit as a sum (converting an infinite sum to definite integral)
@M7RAA Жыл бұрын
how did he get that though?
@MokshitArora. Жыл бұрын
@@M7RAA use tailor series expansion on e^x you will get the series or if you know series of sine and cosine then also you can get that After that replace x with x² and you will get the mentioned series We can reverse it also by finding function with series by writing it as a limit on summation and then converting into Reimann sums then integrating
@PRIYANSH_SUTHAR Жыл бұрын
This guy can intimidate you with full innocence.
@sergeygaevoy6422 Жыл бұрын
And it is a Laplace transform in the end.
@andripula8986 Жыл бұрын
to end with a repeating integral, brilliant problem!
@TsukkiSenpai727 Жыл бұрын
So what’s the answer to 1/5 + 1/5 ? BlackPenRedPen: sooo actually
@aubertducharmont Жыл бұрын
When you got to the final form of the integral, I would just use contour integration to get the answer. I dont like doing that much integration by parts. And also that series in the numerator arent necesserily described by the e to -x squared formula. As you wrote only a finite number of parts, in this case four, there is an infitnite amount of formulas for these four parts of the series. One could pick that after x^2/6 would come 69 and find a formula for this, with use of the Gregory-Newton formula.
@phillipalter6499 Жыл бұрын
My calc professor will love this, thanks
@arvinpersaud1564 ай бұрын
I'm going into precalc next year and I'm kind of excited to be starting calculus. I've been watching these videos for a few years now, and I feel accomplished that I can solve this by myself. Thank you for all of these videos, they give some really interesting equations, and I've learned a lot from them. I hope you keep making quality videos.
@hsod0 Жыл бұрын
You are really awesome!!! Actually, thank you for what you are doing, I'm into mathematics even more because of your videos and I'm really having fun watching them. Please, keep it up. These videos really make my day
@tambuwalmathsclass Жыл бұрын
Wow, incredible. 💪 But isn't the final answer supposed to be -2/5 ?
@ABHIGAMING-yo9my Жыл бұрын
Bro function is always positive so answer should be positive
@joshhh___ Жыл бұрын
@@ABHIGAMING-yo9myThe function f(x) = sin(2x)e^(-x) is not always positive on [0, inf), but ∫₀^∞ f(x)dx is still equal to 2/5.
@stapler942 Жыл бұрын
"Two limits, a derivative, a power series, and an integral wander onto a board..."
@myththelegendtyson Жыл бұрын
We should have an advent of integration. Each day a new integral problem
@TypoKnig Жыл бұрын
Merry Calcu-mas!
@RefreshingShamrock Жыл бұрын
SLOW DOWN ONE HOLIDAY at a time! We haven't even made it past Thanksgiving yet!
@blackpenredpen Жыл бұрын
My bad 😆
@dinokiller9186 Жыл бұрын
The numerator was easy but I couldn't guess the denominator part 👍👍
@yencheonglee59409 ай бұрын
This question is simple. The limits can be found easily, next I replace t=x^2 and come out with \int e^{-t}sin(2t) dt, and then I solve lim_{s -> 1} Laplace transform of sin(2t) by subtracting s=1 in the result.
@Siddhartha.Chatterjee Жыл бұрын
I have not watched it yet... But please tell me it's 2/5 Edit: Ok, I messed up somewhere at plugging infinity at the last part (for some reason I forgot that even with infinity, the sin & cos function would be finite, and applied L'Hopital, somehow ended up having I=-4I, allowing me to say I=0 at x->infinity), but anyways the answer still ended up the same....
@jakehu Жыл бұрын
The kid who just guesses 2/5😂
@pedri_meet Жыл бұрын
That was great!! It's like quick revision
@aimgaming4744 Жыл бұрын
Love these kind of questions, keep it up!
@pekorasfuturehusband Жыл бұрын
I’ve been wanting another all in one problem for a while now, thanks for the early present!
@softllamaspajamas Жыл бұрын
What a thrilling problem! I’ll give it a go myself closer to Christmas!
@PhysicalScienceInSinhala Жыл бұрын
It's amazing 😃❤️
@Peter_1986 Жыл бұрын
I once saw an integral that had integrals as limits of integration, lol.
@MichaelZankel Жыл бұрын
It’s not Christmas without integration!
@skywalker56536 ай бұрын
I love that from watching your calculus videos and using brilliant I was actually able to follow along and solve it in my head though I have done no formal cal classes 😅
@nikko2505 Жыл бұрын
This is simply Laplace Transform
@scottleung9587 Жыл бұрын
Yay - the answer is 2/5 for the 25th (of December)!
@redroach4016 ай бұрын
An easier way to solve the last bit is to remember, when ever you have sin or cos with exp, you can set the trig functions equal to the Imaginary part of the exp function, meaning the problem becomes a simple exp integral. In this scenario, we would have the Imaginary part of the integral from 0 to inf of e^(i2u)*e^(-u) du. This is obviously just e^u(2i-1)/(2i-1) eval: 0 to inf. Infinity diverges so we are left with Im(1/(1-2i)). Multiply by the conjugate and separate the fraction to get the Imaginary part being 2/5.
@AlumniQuad Жыл бұрын
IT'S A CHRISTMAS MIRACLE!
@Priyanshu-q7s9 ай бұрын
we can solve it by gama function
@DravenFNM11 ай бұрын
i think its -2/5, you overlooked the last fraction
@thebeardman7533 Жыл бұрын
It is to early for I still have calc lectures but when Christmas comes be assured that I will solve it
@jonny8448 Жыл бұрын
Thanks professor!!! Christmas is coming and I have to find a crazy Christmas problem for my channel!!!🎄🧑🎄🤶 PS. Not as crazy as yours!!! I wouldn't be able to come up with something like this!!!🤩🤗
@stevencarr4002 Жыл бұрын
To get the limit why not put u = ln(x), then we have e^0.5u in the denominator and u in the numerator as u goes to infinity. This is obviously zero.
@nickfleiwer5272 Жыл бұрын
Thanks a lot for this years Christmas present 😂😂😂 but I might return it later haha
@gameworld6740 Жыл бұрын
This is... A nightmare
@Curiescat-f5f Жыл бұрын
Since it's my bday, i'll take this as my bday gift
@yoniziv Жыл бұрын
Loved it
@TomMarAlem1987 Жыл бұрын
My boy's giving us a surprise in the denominator.
@Jadamhodges Жыл бұрын
Wonderful!!!😊
@pritamsur1926 Жыл бұрын
Please solve this integration.. integral of (32-x^5)^(1/5)🙂
@TozzaYT Жыл бұрын
u sub?
@pritamsur1926 Жыл бұрын
@@TozzaYT mathematics🙂
@benatia99 Жыл бұрын
ty much appreciated
@brucekritt70369 ай бұрын
Strange.. The answer I'm getting is -(2/5). Based on (d/du)[e^(-u)*(sin(2u)+2*cos(2u))] = -5*e^(-u)*sin(2u). I checked that derivative carefully.
@fwelling2703 Жыл бұрын
gonna come back to this video in a year to see if I understand yet.
@codehucau5564 Жыл бұрын
all nightmare come in one
@atommax_1676Ай бұрын
Actually an easy one. Thank you
@hidden_leafy Жыл бұрын
Best Christmas gift I've ever received lol
@armanavagyan1876 Жыл бұрын
Thanks PROF 👍
@namename7000 Жыл бұрын
Hello, how to solve factorial equations like this: 3x!-x^x-2=0 do you have a video about this?
@richardfredlund8846 Жыл бұрын
0,1,2 are trivial solutions, but for different numbers that looks really hard... interesting looking problem type.
@migueldomingos4570 Жыл бұрын
If x's domain is positive integers: You can just do some bounding. Rearrange to 3x! = x^x + 2 and notice that the RHS grows much faster than the LHS, to formalize it you can prove by induction that for x>= 3 x^x > 3x! and thus all solutions will be smaller than 3 and you can easily check that 0,1 and 2 works as richard stated
@atishthatei8842 Жыл бұрын
make me fun as i do in cristmas . thanks bro . but quite a easy one
@anticlashers2617 Жыл бұрын
I likes your videos ❤. Love from india🇮🇳
@CrushOfSiel Жыл бұрын
Ah damn, I was close. Been a while since I did calculus. I got the limits and the numerator right but I thought the denominator was cos(x) and then I was stuck, it is similar.
@knowledge90s939 ай бұрын
Which of the following sequences could represent the impulse response of a stable discrete-time system? k^2 (-0.65)^k 2^k ksin(k)
@igorhaladjian5718 Жыл бұрын
Love the Christmas T-shirt !
@suscraft77672 ай бұрын
solved it quite easily! can u make an starter 3 hour pack on definite integrals!
@diptenduchatterjee950 Жыл бұрын
Yess!! Done in the first attempt. Good question
@umertaiyab5500 Жыл бұрын
i wanted to know how does trigonometric substitution work when you substitute sinx or cosx as they can only have the value from -1 to 1.
@conanedojawa4538 Жыл бұрын
i think that the limit of sinx /e^x when x goes to infinity the sine function goes to a finite value 1 or -1 but e^x goes to infinity then the limit will be zero but I don't know it will be 0 plus or 0 minus
@A_Random_Ghost Жыл бұрын
If you're talking about the final limit. When you have a bounded numerator and a denominator that goes to infinity. You can just conclude the limit goes to zero. And the reverse goes to infinity.
@A_Random_Ghost Жыл бұрын
@@abcd-ug8tj Yeah, I forgot that was a thing 😅.
@hotlatte1222 Жыл бұрын
Great work!! But i think it is more likely for Halloween, not Christmas.
@blackpenredpen Жыл бұрын
lol, it should really be for Thanksgiving since it's just next week! haha
@hotlatte1222 Жыл бұрын
@@blackpenredpen Maybe this question fits all 3 festivals. When seeing it in the beginning, it is so horrible for Halloween. When solving it, it is like the games of finding eggs in Thanksgiving. And finally you reveal the solution with clear steps; which is just a Christmas gift. So cool.
@mickelsantiagoquispenamuch4961 Жыл бұрын
Happy X-mass
@neilgerace355 Жыл бұрын
7:44 Shouldn't that be minus minus 4?
@TristanPopken Жыл бұрын
Its minus minus minus 4 because of the double integration by parts, so it does become minus 4 in the end. This is what the +-+ row stands for on the left column od the D I method
@mathmachine4266 Жыл бұрын
Your thumbnail makes it look like you're being held against your will
@AlejandroGD17 Жыл бұрын
First time I'm actually able to solve one of these!!
@PowerUpStudio_5 ай бұрын
i solved it before watching and got the exact same solution
@maxmccann5323 Жыл бұрын
If you close your eyes and squint your ears, you can almost hear Arnold Schwarzenegger teaching you maths
@KesterPembroke Жыл бұрын
Hey blackpenredpen is there in the complex numbers a function thats inverse equals it's derivative? Thank you
@samueljehanno Жыл бұрын
Interesting
@MichaelZankel Жыл бұрын
Isn’t it -2/5?? Because it was (-sin2u + 2cos2u )/(5e^u), so (-) ALL of that is (-2*1)/5 at the end!! No?
@saadansari1757 Жыл бұрын
Even I think the same
@MichaelZankel Жыл бұрын
@@saadansari1757yeah, Idk why he didn’t put a (-) on the cos at the end.
@Anmol_Sinha Жыл бұрын
It is actually -(sin2u + 2cos2u)/(5e^u) , here -ve is in the outside. During the application or the upper and lower limit of integral, we got -(-(2/5)). I don't think in any part of the video it showed the -ve only on sin(as your comment suggests)
@Anmol_Sinha Жыл бұрын
@@MichaelZankelthe minus never got distributed in the expression. Look at the brackets carefully
@saadansari1757 Жыл бұрын
@@Anmol_Sinha okay thanks
@Asterisk_766 Жыл бұрын
This video exceeds the limits of my Brain
@akgamer4215 Жыл бұрын
Solve this without denominator
@user_0841010 ай бұрын
9:23
@darcash1738 Жыл бұрын
Very nice. Now let’s see Paul Allen’s integral… Nah I’m just joking Paul Allen couldn’t top this one 😂
@tabommenor Жыл бұрын
Bro just made calculus final boss 💀💀
@herbie_the_hillbillie_goat Жыл бұрын
Tis the season.
@PV10008 Жыл бұрын
When evaluating the numberator for u=inf, you say it's finite so its precise value doesn't matter. However, how do you account for the fact that sin(2u)+2cos(2u) can sometimes equal 0? Why is it okay to assume it's non-zero in the limit?
@carultch Жыл бұрын
Sine and cosine are both functions of exponential order. This means that an exponential decay function as its input goes to infinity, will shrink to zero either faster than these functions, or as fast as these functions. This is one of the criteria for a Laplace transform to exist, is that the function has to be of exponential order, which is why sine and cosine have Laplace transforms, but secant and tangent do not.
@aimlessideas1165 Жыл бұрын
2/5 for the 25th👀
@christianvanderstap625711 ай бұрын
What just happened? Got my ass run over by a math truck.
@longlong10203 Жыл бұрын
i thought you are gonna talk about the Gaussian Integral when i saw e^x^2, it's almost, phew
@Morbius7877 ай бұрын
Imagine getting this on you calc two test💀
@Jee25-6 ай бұрын
This was easy, as a 12th grader.
@Passione25076 ай бұрын
@@Jee25-yeah. Revises the basics
@istvanszabo3275 Жыл бұрын
Merry Christmas 2u 😃
@doug2855 Жыл бұрын
Can you explain the math behind cos, sin , tan etc. Like how did cos(45°)=1/sqrt(2).
@doug2855 Жыл бұрын
More generically how would you hand calculate the value of cos(x). X being a random value
@aryanjoshi3342 Жыл бұрын
@@doug2855 power series
@Passersby98 Жыл бұрын
I'm expecting that Mr Tsao could demonstrate how to solve ODE
@rufusmafija8674 Жыл бұрын
hey there i have an incredibly hard question for you: try to find the integral of sqrt(3x²+x) do you know to solve that?
@Ashaiksameer Жыл бұрын
Can u make a roadmap of mathematics and concepts in it😢
@DC_EDITS Жыл бұрын
Great christmas present
@mauriziomorales53038 ай бұрын
Qué EJERCIZASO!!!! I LIKE IT, THANK YOU!!!!!
@cristofer6806 Жыл бұрын
do you have any plans on doing calc 3 stuff, would love to see more of that
@JSSTyger Жыл бұрын
Oh what a wonderful Christmas gift!! (Murmur murmur...)
@evansaschow11 ай бұрын
I hate doing IBP, so I’d much rather decompose sin(2u) into its exponential form
@hearteyedgirl Жыл бұрын
Although I do know 1=0!,1=1!, 2=2!,6=3! and know the intention of the question but the intention itself remains ambiguous There's no way to know if the series really is x^n/n!
@WhiteDMaxwell Жыл бұрын
Why sin(2*infinity) and cos(2*infinity) isn't undefined?