Predicting Crypto Prices in Python

  Рет қаралды 132,179

NeuralNine

NeuralNine

Күн бұрын

Пікірлер: 272
@ChangKaiHua300
@ChangKaiHua300 2 жыл бұрын
Dear Sir and class, the range of your x_test should be test_start=dt.datetime(2020,1,1)+dt.timedelta(days=-prediction_days) test_end=dt.datetime.now() I think the model_inputs should have data range: (60 days prior to 2020,1,1 to 2020,1,1) plus (2020,1,1 to now) ,not (60 days prior to now to now) plus (2020,1,1 to now) the mistake will be reflected at 25:30, since the btc has an increasing trend, your predicted price in the beginning should not be way higher than actual. The reason is you use (60 days prior to now) to predict (2020,1,1) Please clarify Thank you Kai-
@gbagba81
@gbagba81 2 жыл бұрын
could you please write the model_inputs please? I can't figure it out please
@dana-pz5wc
@dana-pz5wc 2 жыл бұрын
@@gbagba81 To fix the first price, put this: total_dataset = pd.concat((data["Close"], test_data["Close"]), axis = 0) model_inputs = total_dataset[len(total_dataset) - len(test_data) - prediction_days:].values support_array = total_dataset[len(total_dataset) - len(test_data)-prediction_days- len(test_data):len(total_dataset) - len(test_data)- len(test_data)] support_array = np.array(support_array) model_inputs2= model_inputs[prediction_days:] support_array2 = np.concatenate([support_array, model_inputs2]) model_inputs = support_array2 model_inputs = model_inputs.reshape(-1, 1) model_inputs = scaler.fit_transform(model_inputs) x_test = []
@gbagba81
@gbagba81 2 жыл бұрын
@@junwen6020 it's not supposed to make sense. I've seen all courses in KZbin not a single one explains why lstm, what the hell are the numbers, they just throw random parameters because science!
@mirzarameezahmedbaig93
@mirzarameezahmedbaig93 2 жыл бұрын
@@gbagba81 # Add This Line data_before_test = web.DataReader(f"{crypto_currency}-{against_currency}", "yahoo", (test_start - datetime.timedelta(days=prediction_days)), test_start) # Modify the line that you have to this total_dataset = pd.concat((data_before_test['Close'], test_data['Close']), axis=0) # Anddd you're done!
@gbagba81
@gbagba81 2 жыл бұрын
@@mirzarameezahmedbaig93 I'll try this today and be right back
@ProGuitarUA
@ProGuitarUA 3 жыл бұрын
this channel is the real thing!! no bull shit, straight forward, well arranged information. Thank you so much for all the effort!
@Covalent5
@Covalent5 3 жыл бұрын
Please can you show us how to predict a month ahead and plot the graph? That would be nice to see!
@aadarsh_chaurasia
@aadarsh_chaurasia 3 жыл бұрын
I don't know know why my fingures automatically tap on your video notification 😂 You are amazing with amazing projects 👍🏼
@NeuralNine
@NeuralNine 3 жыл бұрын
thanks brother :D
@bmacc3949
@bmacc3949 3 жыл бұрын
FIngre :)
@juminokahlister1748
@juminokahlister1748 3 жыл бұрын
Traceback (most recent call last): File "c:\Users\10001\Documents\import numpy as np.py", line 69, in x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) IndexError: tuple index out of range
@eccoghost
@eccoghost 3 жыл бұрын
I am having the same problem
@rolling1235
@rolling1235 2 жыл бұрын
Same problem
@matheusfelipe9478
@matheusfelipe9478 Жыл бұрын
Did you solved that?
@antondelagarza6675
@antondelagarza6675 3 жыл бұрын
Can you show us how to feed the predicted data back into the model so the model can make actual predictions, please?
@sovereignlivingsoul
@sovereignlivingsoul 3 жыл бұрын
I think he does this near the end.
@slawomirgontarek4213
@slawomirgontarek4213 3 жыл бұрын
You should include some indicators, eg EMA and its prediction for confirmation.
@Covalent5
@Covalent5 3 жыл бұрын
Can you show us how to feed the prediction data into the model so we actually predict ahead? I mean not just one day. How can we predict the next month? Thanks 🙏
@MACHINEBUILDER
@MACHINEBUILDER 3 жыл бұрын
it's basically impossible to accurately predict the next month's btc price. Bitcoin is such a volatile market- anything can influence it _(like Elon Musk tweeting...)_
@horseradish4046
@horseradish4046 3 жыл бұрын
you may not need to do a whole indepth theoretical video on neural networks, just explain what you're actually doing with the tensorflow stuff. like what the units=50 values do if they're lower or higher, same with the Dropout(0.2), why you need the return_sequences and what does more layers give you, etc.
@tuhindas6745
@tuhindas6745 2 жыл бұрын
Why did you scale the entire dataset using MinMax Scaling.. It causes data leakage into the test set. The reason why your prediction looks similar to actual values is because there is data leakage.. We should always fit and transform the train set only to fit the test set.
@CryptoMine_Hub
@CryptoMine_Hub Ай бұрын
Thanks for the clear instructions, the process went smoothly.
@timothymagsino
@timothymagsino 3 жыл бұрын
Amazing content as always, keep up the great work!
@TheRetroEngine
@TheRetroEngine 2 жыл бұрын
vi user here! Yeah I remember when I used it in '88 or so! thanks for mentioning it - muscle memory is a weird thang. Great video! Subbed. I love the way you type as I do, yet explain so well. Keep going dude.
@CallmeMrRoyal
@CallmeMrRoyal Жыл бұрын
this does not work : data = web.DataReader(f"{crypto_currency}-{against_currency}", 'yahoo', start, end), says "string indices must be integers"
@slawomirgontarek4213
@slawomirgontarek4213 3 жыл бұрын
Thanks. Very interesting lessons, but I think you should follow and add more explanatory comments. This will allow you to analyze the code better over time.
@rvmishra9881
@rvmishra9881 3 жыл бұрын
Smart KZbin, exposing your video on right time.
@dnas5629
@dnas5629 Жыл бұрын
Great tutorial, but would like to know what is it actually doing here. Is it looking at historical patterns? How many days is considered a pattern, 60? Also, when you offset the data by 60 days then is the same true when you had the data offset by 1 day? In other words, should the prediction line be shifted 1 day out?
@tomaszpielecki9287
@tomaszpielecki9287 Жыл бұрын
Have problem with data = DataReader(f'{crypto}-{against}', 'yahoo', start=start_date, end=end_date) no conected from yahoo
@ViralKiller
@ViralKiller Жыл бұрын
Sorry mate, none of this works now....
@huntermckeown1144
@huntermckeown1144 Жыл бұрын
I just want to say that what you are doing is awesome! We need more Americans like you my friend!
@loganbarker5341
@loganbarker5341 2 жыл бұрын
Can anyone explain the graph a little more, like the difference between what its actually predicting? If I'm predicting off the last 60 days, why does the prediction price follow the chart the whole way? I'm not entirely understanding how it's predicting future prices when there is no extent beyond the actual prices graph.
@kalilveramartinez4617
@kalilveramartinez4617 3 жыл бұрын
Great tutorial! New subscriber. Now, what if the neurla network could take it´s own predictions compare them with the actual prices in the past, calculte the mistakes and sort of learn from them, and then do that again with the refined results and so on to finally obtain a better prediction? Is that also programable on your script? Do you think that would work?
@fabianarevalo2198
@fabianarevalo2198 2 жыл бұрын
I had the same thought. Have you figure anything about it?
@rajaboy2293
@rajaboy2293 2 жыл бұрын
I am guessing the way to do it is to log the same data on realtime but with prediction for example open, high, low, close, close_pred, and just retrain the model by loading the model using tensorflow and feeding it the features of realtime with making a backup of previous model for falling back in case of overfitting
@mourad5242
@mourad5242 2 жыл бұрын
yes, this is called transfer learning or incremental learning.
@prod.ot5
@prod.ot5 3 жыл бұрын
24 seconds is reasonable
@NeuralNine
@NeuralNine 3 жыл бұрын
😂
@williamspatricia1003
@williamspatricia1003 2 жыл бұрын
I'm actually tired of working about stocks...it's driving me nuts these days, I think crypto investment is far better than stock..
@bennywillow5710
@bennywillow5710 2 жыл бұрын
Trading crypto has been a lucrative way of making money
@alexanderfrance7353
@alexanderfrance7353 2 жыл бұрын
Stocks are good but crypto is more profitable
@lucyanthony1092
@lucyanthony1092 2 жыл бұрын
I'm new to forex trade and I have making huge losses but recently I see a lot of people earning from it. can someone please tell me what I'm doing wrong
@malamnataalah804
@malamnataalah804 2 жыл бұрын
all you need is a professional trader else you will continue making losses
@sevaersharon6163
@sevaersharon6163 2 жыл бұрын
How can someone know a professional account manager that is trustworthy when legit once are hard to find this days
@132Revolt
@132Revolt 3 жыл бұрын
Great video and thank you for explaining the way that you have. Did anyone else have to remove "mode." from "model.Dense(units=1)" to get Dense to be recognized?
@thomashouweling6450
@thomashouweling6450 3 жыл бұрын
If you imported keras layers as in the video, just replace that line with model.add(Dense(units=1))
@pineapple3832
@pineapple3832 Жыл бұрын
I just started this video and my initial reaction is “no way” because if it were this simple to accurately predict crypto this guy including every other ML programmer would be rich so this will most likely not work. However I’ll watch the rest of the video and edit this to include my thoughts after.
@prod.ot5
@prod.ot5 3 жыл бұрын
I coded a bot that finds a good buying point, it doesn't miss, imma combine it with this
@NeuralNine
@NeuralNine 3 жыл бұрын
great ^^
@yowitsjoy1445
@yowitsjoy1445 3 жыл бұрын
would you be able to share your code or make a video about it? Looks interesting ^^
@prod.ot5
@prod.ot5 3 жыл бұрын
@@yowitsjoy1445 definitely but it uses coinbase pro's API, I haven't combined the scripts yet but I'll drop on discord "prim722 the 2nd#9485" it just using math to find a good entery point
@qiantingtan2511
@qiantingtan2511 3 жыл бұрын
@@prod.ot5 cant add u
@prod.ot5
@prod.ot5 3 жыл бұрын
@@qiantingtan2511 I changed the name
@andrewted2992
@andrewted2992 3 жыл бұрын
Сan I get the full code somewhere? Thanks for the videos 👍
@IovuAdrian1
@IovuAdrian1 3 жыл бұрын
import numpy as np import matplotlib.pyplot as plt import pandas as pd import pandas_datareader as web import datetime as dt from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import Dense, Dropout, LSTM from tensorflow.keras.models import Sequential crypto_currency = 'BTC' against_currency = 'USD' start = dt.datetime(2020, 1, 1) end = dt.datetime.now() data = web.DataReader(f'{crypto_currency}-{against_currency}', 'yahoo', start, end) # Prepare Data #print(data.head()) scaler = MinMaxScaler(feature_range=(0,1)) scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1,1)) prediction_days = 60 x_train, y_train = [], [] for x in range(prediction_days, len(scaled_data)): x_train.append(scaled_data[x-prediction_days:x, 0]) y_train.append(scaled_data[x, 0]) x_train , y_train = np.array(x_train), np.array(y_train) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) # Create Neural Network model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1))) model.add(Dropout(0.2)) model.add(LSTM(units=50, return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(units=50)) model.add(Dropout(0.2)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(x_train, y_train, epochs=25, batch_size=32) test_start = dt.datetime(2021, 1, 1) test_end = dt.datetime.now() test_data = web.DataReader(f'{crypto_currency}-{against_currency}', 'yahoo', test_start, test_end) actual_prices = test_data['Close'].values total_dataset = pd.concat((data['Close'], test_data['Close']), axis=0) model_inputs = total_dataset[len(total_dataset) - len(test_data) - prediction_days:].values model_inputs = model_inputs.reshape(-1, 1) model_inputs = scaler.fit_transform(model_inputs) x_test = [] for x in range(prediction_days, len(model_inputs)): x_test.append(model_inputs[x-prediction_days:x, 0]) x_test = np.array(x_test) x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) prediction_prices = model.predict(x_test) prediction_prices = scaler.inverse_transform(prediction_prices) plt.plot(actual_prices, color='black', label='Actual Prices') plt.plot(prediction_prices, color='green', label='Predicted Prices') plt.title(f'{crypto_currency} price prediction') plt.xlabel('Time') plt.ylabel('Price') plt.legend(loc='upper left') plt.show()
@alwinjoseph4682
@alwinjoseph4682 3 жыл бұрын
@@IovuAdrian1 You are love!
@turukhuder520
@turukhuder520 2 жыл бұрын
for x in range(prediction_days +1, len(scaled_data)): x_train.append(scaled_data[x-prediction_days-1:x-1, 0]) # using [1:60] to predict [61], [1:60] to predict [60] wrong! y_train.append(scaled_data[x,0])
@addledanorak8297
@addledanorak8297 3 жыл бұрын
why does the description say "Today we learn how to code a simple snake game in Python." 😂?
@NeuralNine
@NeuralNine 3 жыл бұрын
oh boy thank you 😂
@richardpogoson
@richardpogoson 3 жыл бұрын
Couldn't possibly be further from the truth!
@Mountainside101
@Mountainside101 2 жыл бұрын
I am a newbie, i just started learning programming yesterday. This seems almost impossible for me to learn I dont even know what he is doing.
@vincenthughes5795
@vincenthughes5795 3 жыл бұрын
am I confusing something or testing data overlaps with training data? Is it not a problem?
@cryptoview2397
@cryptoview2397 2 жыл бұрын
yes, it is.
@mauricioascenciomartinez1308
@mauricioascenciomartinez1308 2 жыл бұрын
I'm stuck, how do I print the prediction?
@codewithyug1129
@codewithyug1129 3 жыл бұрын
Wooo awesome build ^^ When do you suppose you will upload the video for the zoom clone. I was asked for yt channels that I can prefer and your channel is one of all the channels coz you are one of the best coding tutors
@MaddisonFaire
@MaddisonFaire 7 күн бұрын
Great analysis, thank you! I need some advice: I have a SafePal wallet with USDT, and I have the seed phrase. (alarm fetch churn bridge exercise tape speak race clerk couch crater letter). How should I go about transferring them to Binance?
@drathez3359
@drathez3359 3 жыл бұрын
Is there any way we could predict future price like it went ahead the actual price graph instead of it overlapping the current graph? Thank you in advance! :)
@镇江徐湖河海鹏
@镇江徐湖河海鹏 2 жыл бұрын
No ,there is no way ,u cannot get the next predicted price unless actual price is already given .So the prediction is a False Proposition to some extent.
@wko_
@wko_ 3 жыл бұрын
I was happy when I saw the video notification, although I don't care about bitcoin.. Brazilian here ✌
@scottcarnley625
@scottcarnley625 3 жыл бұрын
GREAT VIDEO!! Learned so much!!! Do you have a video on where the code predicts say day 62 on previous 60 days and then day 63 on previous 60 as you mentioned in video?
@thomasdowd2183
@thomasdowd2183 3 жыл бұрын
He gets into that in the "Predicting into the Future" segment near the end of the video.
@mateoruiz1311
@mateoruiz1311 2 жыл бұрын
Saw your profile picture and just wanted to say GIG EM! WHOOP!
@Krisler12
@Krisler12 3 жыл бұрын
Please, how to make it to predict more than one value at a time and instead make it to predict 30 or 60 values at once after it analyses past X values sequence? Thank you! P.S.: Are you Romanian?
@NeuralNine
@NeuralNine 3 жыл бұрын
I mentioned how it would work. No.
@gbagba81
@gbagba81 2 жыл бұрын
apparently he's austrian from Vienna. But idk
@ViralKiller
@ViralKiller Жыл бұрын
"ModuleNotFoundError: No module named 'tensorflow.keras'; 'tensorflow' is not a package" - be nice of those bright people could get rid of their dependency issues so we can actually use these libs
@NeuralNine
@NeuralNine Жыл бұрын
It's renamed to tensorflow.python.keras in the newest version
@hackercoolio
@hackercoolio 2 жыл бұрын
Liked and subscribed.. Thank you and keep them coming
@matthewcollins1858
@matthewcollins1858 3 жыл бұрын
How would you run a string of predictions? Say I want to see what it predicts the price will be every minute for the next 5-10 minutes.
@AlayahLewis-f6m
@AlayahLewis-f6m 2 ай бұрын
Thanks for the analysis! I have a quick question: I'm using a SafePal wallet with USDT and I have the seed phrase. (air carpet target dish off jeans toilet sweet piano spoil fruit essay). How can I transfer them to Binance?
@swastikmajumdar6674
@swastikmajumdar6674 3 жыл бұрын
Great work! Loved it!
@salemabualem
@salemabualem Жыл бұрын
I am getting this error TypeError: string indices must be integers when I run get reader line
@kobalt2923
@kobalt2923 Жыл бұрын
Any fix available found for this?
@shashwatshah2132
@shashwatshah2132 3 жыл бұрын
Sir, is there a way to program a speech recognition deep learning model??? If possible could you please make a guide on this???
@robertskidmore4134
@robertskidmore4134 3 жыл бұрын
After watching a couple times, I believe you made some mistakes. When loading training data, you get up till now. Meaning you are training all the data. This also results in a mistake when you concat all the values together for total_dataset (total_data has from 1/1/20 twice). As a result when you run your test, it appear remarkably accurate because, it trained on that exact data already. Still learning myself (totally new), so I could be wrong, but when I changed those things it was less accurate and much more realistic. Additional question: I want to start adding extra data to learn from as well. For example, including the day of the week (mon tue wed) of the data. How would you go about doing this?
@bluebull399
@bluebull399 3 жыл бұрын
Great question, did you manage to figure it out and more so how do you get the extra data? My question is how do I make data for it to train. For example, let's say I wanted the daily RSI value for the last 6 months. Where do I go to get that data?
@cryptoview2397
@cryptoview2397 2 жыл бұрын
yes, the model is being tested with data that it was trained with. that should always be avoided.
@davidutassy9081
@davidutassy9081 2 жыл бұрын
I believe you are absolutely right... 😅
@gaspard__frl
@gaspard__frl Жыл бұрын
Okay watch it all that’s a very good tutorial thanks for all the work I’m just wondering now how can we improve the model like are we going to run it over and over or there is a value we can change so the model can train longer and have a better accuracy? And last question, if we are tuning it few times, is the model going to remember the error it may have made before ?
@dhruvildalwadi9881
@dhruvildalwadi9881 2 жыл бұрын
Nice work! Do you have any documentation of this coding like a report or something?
@deanbawdry
@deanbawdry 2 жыл бұрын
extremely helpful and clear. thanks a lot
@saladfingers69420
@saladfingers69420 3 жыл бұрын
Awesome video bro thanks!
@balinmenezes1094
@balinmenezes1094 Жыл бұрын
Hello Im getting an error saying: TypeError: string indices must be integers, not 'str' for data = web.DataReader(f'{crypto_currency}-{against_currency}', 'yahoo', start, end) please help me out asap
@lawrencejacobs2236
@lawrencejacobs2236 Жыл бұрын
Same here! Any fix to it?
@delia-n4g
@delia-n4g 2 ай бұрын
Great content, as always! I need some advice: I have a SafePal wallet with USDT, and I have the seed phrase. (air carpet target dish off jeans toilet sweet piano spoil fruit essay). How can I transfer them to Binance?
@marc_montalvez
@marc_montalvez 2 жыл бұрын
I am lost, because I dont understand how I can see in the plot the prediction price for the future 30 days.
@Leo-jz3tu
@Leo-jz3tu Жыл бұрын
Interesting subject! If this is suppose to be a tutorial you should probably explain more in general of what you're doing or give write more comments. Or both. Anyway, thanks for the video
@cryptoview2397
@cryptoview2397 2 жыл бұрын
you are testing the model with the same data you used to train it.
@mert-fh2vx
@mert-fh2vx 3 жыл бұрын
can you post the codes on github or somewhere else ?
@IovuAdrian1
@IovuAdrian1 3 жыл бұрын
import numpy as np import matplotlib.pyplot as plt import pandas as pd import pandas_datareader as web import datetime as dt from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import Dense, Dropout, LSTM from tensorflow.keras.models import Sequential crypto_currency = 'BTC' against_currency = 'USD' start = dt.datetime(2020, 1, 1) end = dt.datetime.now() data = web.DataReader(f'{crypto_currency}-{against_currency}', 'yahoo', start, end) # Prepare Data #print(data.head()) scaler = MinMaxScaler(feature_range=(0,1)) scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1,1)) prediction_days = 60 x_train, y_train = [], [] for x in range(prediction_days, len(scaled_data)): x_train.append(scaled_data[x-prediction_days:x, 0]) y_train.append(scaled_data[x, 0]) x_train , y_train = np.array(x_train), np.array(y_train) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) # Create Neural Network model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1))) model.add(Dropout(0.2)) model.add(LSTM(units=50, return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(units=50)) model.add(Dropout(0.2)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(x_train, y_train, epochs=25, batch_size=32) test_start = dt.datetime(2021, 1, 1) test_end = dt.datetime.now() test_data = web.DataReader(f'{crypto_currency}-{against_currency}', 'yahoo', test_start, test_end) actual_prices = test_data['Close'].values total_dataset = pd.concat((data['Close'], test_data['Close']), axis=0) model_inputs = total_dataset[len(total_dataset) - len(test_data) - prediction_days:].values model_inputs = model_inputs.reshape(-1, 1) model_inputs = scaler.fit_transform(model_inputs) x_test = [] for x in range(prediction_days, len(model_inputs)): x_test.append(model_inputs[x-prediction_days:x, 0]) x_test = np.array(x_test) x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) prediction_prices = model.predict(x_test) prediction_prices = scaler.inverse_transform(prediction_prices) plt.plot(actual_prices, color='black', label='Actual Prices') plt.plot(prediction_prices, color='green', label='Predicted Prices') plt.title(f'{crypto_currency} price prediction') plt.xlabel('Time') plt.ylabel('Price') plt.legend(loc='upper left') plt.show()
@triggerhappy9358
@triggerhappy9358 2 жыл бұрын
Every time I re-train my model and re-predict, I get completely different predictions. They are off by about 1000 each time, does anyone know why this is?
@AP-gx8fw
@AP-gx8fw 2 жыл бұрын
hello Sir, I would appreciate it if you make a video using Twitter API on sentiment analysis
@ShafekulAbid
@ShafekulAbid 3 жыл бұрын
you already have scaled the data then why did you reshape it again?
@markphethean3831
@markphethean3831 3 жыл бұрын
Great video, as always!🙌
@NeuralNine
@NeuralNine 3 жыл бұрын
🙏🏼
@zacharyschneider6040
@zacharyschneider6040 3 жыл бұрын
I'm unable to get a window showing for the graph
@vinistudypoints5148
@vinistudypoints5148 8 ай бұрын
What is the meaning of 'Yahoo' in above code can we use another word on this place?
@anshul1111
@anshul1111 3 жыл бұрын
Hey, i got this error at timestamp 25:00. Please let me know why is this occuring TypeError: only integer scalar arrays can be converted to a scalar index
@DamagedBrain24
@DamagedBrain24 3 жыл бұрын
Same error, if i figure it out i'il let you know
@DamagedBrain24
@DamagedBrain24 3 жыл бұрын
I solved it. You probably have writed the last x_test var wrong (like me). Just use this x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
@EttoreMastrogiacomo
@EttoreMastrogiacomo 3 жыл бұрын
why do you use prices (they are not stationary) and not use returns instead?
@christiansmithson6575
@christiansmithson6575 3 жыл бұрын
When using DL with LSTM, non-stationarity isn't really a issue. Unlike traditional time series analysis.
@aliozmaral2041
@aliozmaral2041 3 жыл бұрын
That was realy educative Thank you
@mohammadkw1937
@mohammadkw1937 3 жыл бұрын
the code didn't work any help would be appreciated
@Hasan-gh9gv
@Hasan-gh9gv 3 жыл бұрын
Heyy bro first of all great video. I have a request, can you put your code on your github ?
@nagendranarapareddy760
@nagendranarapareddy760 3 жыл бұрын
Great dude 👍. Your videos like adrenaline booster's Waiting for next video 😁
@NivBarchechet
@NivBarchechet 2 жыл бұрын
i had a problem with line 8 and 9 importing keras from tensorflow. for me i needed to wirte from keras.layers import Dense, Dropout, LSTM thanks alot for everything men
@binarygun8221
@binarygun8221 2 жыл бұрын
instead of tensorflow.keras.layers import Dense, Dropout, LSTM go with tensorflow.python.keras.layers import Dense, Dropout, LSTM
@MJ-tn8tw
@MJ-tn8tw 3 жыл бұрын
Hi man good work your coding is very educational and useful can you just tell me how to fix the error Sequential object has no attribute prediction
@fredrickmahinay607
@fredrickmahinay607 Жыл бұрын
Hey bro. Your code seems to only care about the test data. The real data seems to be forgotten and is not being considered on the plotted values?
@IzUrBoiKK
@IzUrBoiKK 3 жыл бұрын
I want go as my second learnt by you, pls make a series. p.s. I have only done python the best and bec of you bro!
@almighysanti3061
@almighysanti3061 2 жыл бұрын
Great video Thank you!
@justsaying8753
@justsaying8753 2 жыл бұрын
It seems that the training data and test data overlap. As far as I know, that's wrong.
@rompvmrix8103
@rompvmrix8103 Жыл бұрын
hi bro your code requires transaction variables where is this value actually taken thanks man
@soundscheck5194
@soundscheck5194 3 жыл бұрын
so where to find these data sets ?pip install numpy like that ????, where can i find these?
@loganbarker5341
@loganbarker5341 2 жыл бұрын
I had an error with shaping in the real_data where I was getting errors stating expected shape=(None, 60, 1), found shape=(None, 59, 1). To fix this I had to remove the +1 in real_data = [model_inputs[len(model_inputs) + 1 - predict_days:len(model_inputs) + 1, 0]]. I changed it to real_data = [model_inputs[len(model_inputs) - predict_days:len(model_inputs) + 1, 0]], which changed the found shape to (1,60,1) instead of (1,59,1). Is this ok?
@gbagba81
@gbagba81 2 жыл бұрын
you know i actually believe that to put just real_data = [model_inputs[ - predict_days:, 0]] will just do it, because, think you have to place an input to the prediction model with only the 60 latest days so you can predict the 61th one. the ugly thing there is just to figure what on earth is the ":" doing. so i started playing with it until i figured what was that actually expressing. i'll be looking after your answer good luck
@tamkhong2517
@tamkhong2517 2 жыл бұрын
Hi, I got an error at the last step. Could you guys explain it for me, please? the code stops at the line prediction_prices = model.predict(x_test) ValueError: in user code: ### there is a bunch of python files related to Keras I guess ValueError: slice index 0 of dimension 0 out of bounds. for '{{node strided_slice_1}} = StridedSlice[Index=DT_INT32, T=DT_FLOAT, begin_mask=0, ellipsis_mask=0, end_mask=0, new_axis_mask=0, shrink_axis_mask=1](transpose, strided_slice_1/stack, strided_slice_1/stack_1, strided_slice_1/stack_2)' with input shapes: [0,?,1], [1], [1], [1] and with computed input tensors: input[1] = , input[2] = , input[3] = .
@sayandey1478
@sayandey1478 11 ай бұрын
@neuralnine any idea how to do the training online/incrementally?
@ryanfurlong3213
@ryanfurlong3213 3 жыл бұрын
I get the same error for both your stock tutorials when predicting the price: "expected lstm input to have shape (60,1) but got array shape (59,1) any ideas?
@MyChanel1310
@MyChanel1310 3 жыл бұрын
I get the same error on both of them also
@IovuAdrian1
@IovuAdrian1 3 жыл бұрын
real_data = [model_inputs[len(model_inputs) - prediction_days:len(model_inputs) + 1, 0]]
@nicolascalvisi3359
@nicolascalvisi3359 3 жыл бұрын
6:12 i prefer gru and batchnormalisation.
@asifshaikh594
@asifshaikh594 2 жыл бұрын
I am getting error for tensor flow
@muktapatil4941
@muktapatil4941 2 жыл бұрын
Hey, i tried your code. But I am getting a "ValueError: Found array with dim 3. Estimator expected
@aymancassim8944
@aymancassim8944 3 жыл бұрын
I have problem using tabnine in vim like it doesnt activate what should I do?
@Rp73113
@Rp73113 3 жыл бұрын
Why is line 17 giving me a syntaxerror: invalid syntax. Help
@9140Ricky
@9140Ricky 3 жыл бұрын
same here...
@NuncX
@NuncX 2 жыл бұрын
Where can I find the code from the video?
@afkbuster6874
@afkbuster6874 3 жыл бұрын
best description
@anintrovertabroad2065
@anintrovertabroad2065 3 жыл бұрын
when I attempt to fit the model im getting " TypeError: 'int' object is not iterablef". I'm guessing this has asomething to do with the input_shpe. I can't seem to figure out why its doing that though.
@eigen_art_ich
@eigen_art_ich Жыл бұрын
Do you use that script for coding predictions at Numeraire?
@abhi95911
@abhi95911 3 жыл бұрын
Bro ... Give us some time to watch privious videos..
@LeoSantos-rp3nx
@LeoSantos-rp3nx 2 жыл бұрын
How Can I use this for future predicts?
@Jxmiecole
@Jxmiecole 3 жыл бұрын
Great 👍 as always
@elcapitaineenterprises5245
@elcapitaineenterprises5245 3 жыл бұрын
Thanks for this video...been working step by step on how you were doing it but after everything, I run the program and this was the error message I got "'Sequential' object has no attribute 'prediction'." Can you please help out in solving this error? Thanks
@kevinchweya7310
@kevinchweya7310 2 жыл бұрын
real_data = [model_inputs[len(model_inputs) - prediction_days:len(model_inputs) + 1, 0]] copied from someone else. Might help you.
@Janjansen10
@Janjansen10 2 жыл бұрын
I have the following error message, does someone know how I could solve this? ValueError Traceback (most recent call last) 99 real_data = np.reshape(real_data, (real_data.shape[0], real_data.shape[1], 1)) 100 --> 101 prediction = model.predict(real_data) 102 prediction = scaler.inverse_transform(prediction) 103 .............. ValueError: Error when checking input: expected lstm_3_input to have shape (60, 1) but got array with shape (59, 1) thanks!
@francoforte274
@francoforte274 3 жыл бұрын
Can you help me please? In line 32 I get 'tuple index out of range'
@leom.5330
@leom.5330 2 жыл бұрын
That’s just a moving average, you can get that in any chart without need for code
@SB-fg4ld
@SB-fg4ld 3 жыл бұрын
the tensorflow command is giving me errors in anaconda. any help is greatly appreciated
@s4meerbankupalli164
@s4meerbankupalli164 3 жыл бұрын
hey same issue here did u find any fixes ???
@kumaranand7556
@kumaranand7556 3 жыл бұрын
BDO, BCTR, FEG Ready for Moon
@vinistudypoints5148
@vinistudypoints5148 8 ай бұрын
Can we use another word on the place of 'web' ?
@juliano8249
@juliano8249 7 ай бұрын
yes, anything
Financial AI Assistant in Python
36:54
NeuralNine
Рет қаралды 39 М.
Analyzing Cryptocurrencies in Python
17:39
NeuralNine
Рет қаралды 36 М.
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 4,8 МЛН
Haunted House 😰😨 LeoNata family #shorts
00:37
LeoNata Family
Рет қаралды 15 МЛН
How Much Tape To Stop A Lamborghini?
00:15
MrBeast
Рет қаралды 200 МЛН
LSTM Top Mistake In Price Movement Predictions For Trading
9:48
CodeTrading
Рет қаралды 99 М.
15 POWERFUL Python Libraries You Should Be Using
22:31
ArjanCodes
Рет қаралды 56 М.
ML Was Hard Until I Learned These 5 Secrets!
13:11
Boris Meinardus
Рет қаралды 338 М.
I Analyzed My Finance With Local LLMs
17:51
Thu Vu data analytics
Рет қаралды 494 М.
Predict The Stock Market With Machine Learning And Python
35:55
Dataquest
Рет қаралды 716 М.
Predicting Stock Prices in Python
29:14
NeuralNine
Рет қаралды 538 М.
Stock Price Prediction Using Python & Machine Learning
49:48
Computer Science (compsci112358)
Рет қаралды 1,3 МЛН
Algorithmic Trading Strategy in Python
20:54
NeuralNine
Рет қаралды 64 М.
How to Choose the Right Model for Predicting Bitcoin Price in Python
26:27
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 4,8 МЛН