The original equation is equivalent to (1+i)√a=12; multiplying both sides by (1-i) yields 2√a=12(1-i), or √a=6(1-i) thus a=36(1-i)^2=-72i;
@Frank-kx4hc18 сағат бұрын
Sqrt(-a)=s*is*qrt(a), s=+1 or -1 Thus sqrt(a)=12/(1+i*s) =12(1-is)/(1+s^2)=6(1-is) a=36(1-s^2-2is)=72i or -72i
@martinzavalaleon885618 сағат бұрын
@georgewu5885, está claro que no son equivalentes porque la ecuación original tiene soluciones a pares y tú obtuviste solo una solución. También dirías que la ecuación original es equivalente a (1+i)sqrt(-a) = 12 y obtendrias otra solución. ¿Dirías que (1+i)sqrt(a) = 12 y (1+i)sqrt(-a) = 12 son equivalentes?
What is the solution significance? Mere mathematics.
@Frank-kx4hc18 сағат бұрын
Sqrt(-a)=s*i*qrt(a), s=+1 or -1 Thus sqrt(a)=12/(1+i*s) =12(1-is)/(1+s^2)=6(1-is) a=36(1-s^2-2is)=72i or -72i
@allanflippin24533 күн бұрын
That's an interesting problem! Can you tell me how to check the results? I've tried, but I'm not getting "12" after the math. Thanks. It's my fault because I don't know how to deal with sqr(-1) inside a sqr.
@joeviolet4185Күн бұрын
You are right. sqrt(72·i) + sqrt(-72·i) = [sqrt(72)/sqrt(2) + i·sqrt(72)/sqrt(2)] + [-sqrt(72)/sqrt(2) + i·sqrt(72)/sqrt(2)] = 2·i·sqrt(36) = 12·i, but not Real 12. Thus, I need a solution, where the Imaginary parts of the Complex roots cancel out and not the Real parts. The error in calculation is that i^2 = -1, but i^6 = -1, too. The double squaring in finding the solutions makes it necessary to multiply the solutions with i². When I check the initial equation with = 72·i³ and a = -72·i³ I get the answer 12, because then taking the square roots leads to sqrt(a) = sqrt(72·i³) = i·sqrt(72·i), which not only exchanges Real and Imaginary Parts of the complex number, but also multiplies the former Imaginary part with -1, i.e., changes the sign of the resulting Real part. In this case, the Imaginary parts of the roots cancel out and the sum of the Real parts is a Real number.
@allanflippin2453Күн бұрын
@@joeviolet4185 Thanks! I know I couldn't figure it out anyway.
@rbtmdl12 сағат бұрын
Where'd you get x and q? There wasn't any x and q in the original formula then all of a sudden we have an x and a q.
@anatolykhmelnitsky2841Күн бұрын
√a + √(-a) = 12; √a +√(-1*a) = 12; √a +i√a = 12; √a(1 + i) = 12; √a = 12/(1 + i); (√a)² = (12/(1 + i))²; a = 144/(1 + i)²; a = 144/(1 + 2i -1); a = 144/2i; a = 72/i; a = 72i/i²; a = -72i; ±a = ∓72i; a₁ = -72i; a₂ = 72i;
@Frank-kx4hc17 сағат бұрын
@@anatolykhmelnitsky2841 a=144/(2i) = -72i In the begining sqrt(-a)=+or-isqrt(a) Thus a=+or-i72 .
@ForestHills101Күн бұрын
a=-72i is the only solution (real radical). a=+72i is not a solution (imaginary radical).
@Frank-kx4hc18 сағат бұрын
a=+ or- 72i because sqrt(-a)=+or-isqrt(a)
@rafaelyorro446616 сағат бұрын
Lo hiceeee mas corto -72
@Frank-kx4hc19 сағат бұрын
Very bad ! Return to school
@ajeethpandey3 сағат бұрын
Irritating way of explanation !
@송세흠Күн бұрын
This problem is not right. We can not have negative number in a route. One of a or -a is negative number.
@paulokas6922 сағат бұрын
In complex numbers, we can have sqroot of negative numbers
@anoopkumar-dt7wp8 сағат бұрын
Understood that You are just a kid. When you reach higher classes, you will learn the concept of complex numbers...😊