√a+√-a=32 √a+√a*i=32 √a(1+i)=32 a(1+2i-1)=+/- 32^2 a*2i= +/- 1024 a= +/- 512/i = +/- 512 * i Вроде так намного проще
@МиколаДзядукАй бұрын
Умножим обе части равенства на √а, получим а-а=32√а, или 32√а=0, а=0 Парадокс.
@Serghey_83Ай бұрын
😂 Ну да. Надо было сразу сказать, что а - мнимое число вида xi
@TheCktulhuАй бұрын
Если ты √a+√-a домножишь на √a у тебя получится а - a * i. А не а - а.
@MorgKevАй бұрын
Where does "a(1+2i-1)=+/- 32^2" come from? I am referring to the +/-. The original question shows there is pos/neg symmetry but are you saying it follows directly from √a(1+i)=32 to a(1+2i-1)=+/- 32^2? If so, why? Thanks
@АлександрРоот-п9бАй бұрын
Конечно, именно такой вариант решения напрашивается в первую очередь.
@theclown100013 күн бұрын
No need for so much gymnastics. You can just square the original equation on each side and get the solution in less than a min.
@KUTTTYYOPOPONI.NILNILNIL7 күн бұрын
11:11 am, here, particularly here, mainly here, have fully noted that way too many dark-conceited-coakyblots add fully useless imaginary gymnastics++++, ai-blots to nil-up-square-cube, etc but if unable to pay to all vital deals at once, then even all preset solid square deals are always nullified- copying-coakycracked-minds fall the u-turned (-) ai of these xxknowns fall till under roots squared if via all fully ingrained fakes++ preset aiming at any low-fatess later if just as any too remote their too phony dark-black-holes fully unseen upon coaky-minded misusing ?????????????????
@pavelsanda31492 ай бұрын
Squaring the equation is not an equivalent conversion. Thus the answer must be tested.
@pascaldechambault86702 ай бұрын
Yes, the function ! f(x) = x2 is not a injective function !
@MrMLehman18 күн бұрын
Yes, I would like to see a follow-up video where the answer is tested.
@chrisolmsted56788 күн бұрын
The square route of negative 1 is by convention ì. Is there a letter for the square root of ì ? If I assume that letter is ö (in honor of Gödel's incompleteness theorem) then attempts to find the other solution to ö squared (not ì) might show that self referential statements (even in math) can be as paradoxical as Schrodinger's cat. But back to my question, is there a letter for the fourth root of negative 1?
@RichardPenner6 күн бұрын
Sqrt(z) is on the right half of the complex plane, so sqrt(z) + sqrt(-z) is a non-negative real number when z is on the imaginary axis. The equation is symmetric with respect to replacing x with -x everywhere so the two solutions did not represent the introduction of a spurious one.
@RichardPenner6 күн бұрын
@@chrisolmsted5678Gödel has nothing to do with it. The complex numbers are algebraically closed, meaning any polynomial equation with complex coefficients has solutions in complex numbers. x^2 - i = 0 has solutions +/- (1+i)/(2^(1/2)) because (1+i)^2 = (1+i+i-1)=2i All the roots of i exist. [cos(π/(2n)) + i sin(π/(2n))]^n = i
@mohammednoordesmukh3784Ай бұрын
Better if we square as it is, both sides at the first step: a - a + 2ai = 1024 a = - 512i
@henishgodwin564321 күн бұрын
Nah bro! That's wrong.
@henishgodwin564321 күн бұрын
U won't get that 2ai in your 1st step
@michaelschindler109 күн бұрын
Sure you geht the 2ai in First step. for Dummies: 2*sqrt(a)*sqtr(a)*i But answer musst bei tested for the Same reson th Long stuff in the Video musst bei tested
@koenraad46188 күн бұрын
@@michaelschindler10 I tested the solution, it is correct, and +512i is also correct.
@saurabhsrivastava41402 ай бұрын
√a(1+i)=32 Squaring both sides, we get a(1-1+2i)=32×32 a=32×16/i a=512/i a=-512i a=-512i, +512i because during the solution we used squaring both side
@matthiasroelz21 күн бұрын
try to put this result into the equation. You will see, that it will not fit
@@matthiasroelz Well, I did just that and it fits perfectly. This solution is 100% correct, period.
@matthiasroelz8 күн бұрын
@@koenraad4618 yes, i made a mistake 😅
@matthiasroelz6 күн бұрын
@@koenraad4618 Just on question that drives me crazy: I can write -512i as (16 - 16i)^2 or as (-16 + 16i)^2 If i put this squares into the equation and directly cut the square and the squareroot i got with the first one 32 but with the last one -32 WTF, try it what i am doing wrong?
@atul5819 күн бұрын
Why show elementary steps. Please skip them. These types of videos are not seen by those who need to be explained - divide both sides by 2 😂
@RavindraRao10 күн бұрын
Very true especially if these are Math Olympiad problems
@ronan.pellen8 күн бұрын
@@RavindraRao some of us are just casual curious viewers, doesn't seem very difficult for anyone familiar with complex numbers so they might just as well skip the whole video
@E.h.a.b2 ай бұрын
√-a = i√a √a + √-a = √a + i√a = √a (1 + i) = 32 a (1+i)^2 = 1024 //Square both sides 2 i a = 1024 a = 512/i = - 512 i
@NikitaBotnakovАй бұрын
Great!
@DoonburnАй бұрын
This overlooks the fact that -i is also a square root of -1, so you also need to consider sqrt(-a) = (-i)sqrt(a). That will take you to the other solution, a = 512i
@hanslepoeter516719 күн бұрын
@@DoonburnDoes it ? I mean (-i)^2 = -1,where -(i^2)=1. The latter applies so i do not believe +512i is a valid solution. The original poster squares something and then takes the square root which is not a way to freely convert a positive to a negative number or visa versa. I'm pretty sure my bank would not accept. It's called an extraneous solution and indeed should be checked whenever you square something and use squareroot later.
@Doonburn19 күн бұрын
@@hanslepoeter5167 Go to the original equation: sqrt(a) + sqrt(-a) = 32. From the symmetry between a and -a, is it not obvious that if a = -x is a solution then so is a = x? So if -512i is a solution then so is 512i.
@Doonburn19 күн бұрын
@hanslepoeter5167 Go to the original equation: sqrt(a) + sqrt(-a) = 32. From the symmetry between a and -a it is obvious that if a= -x is a solution then so is a = x. So if -512i is a solution then so is 512i.
@felipe3889-p6b2 ай бұрын
This result is correct but can be obtained in much fewer lines!🙂
@olaminiranadetula6683Ай бұрын
Sometimes the steps are needed for better understanding.
@dextrous3rd48519 күн бұрын
Absolutely. Squaring the first line would do it. Then checking to see if the solutions are valid .
@umitsayman14 күн бұрын
It better for math enthusiasts to fully understand each step. Mathematicians surely solve in much less lines but they get this experience in numerous years.
@jozz211 күн бұрын
Yep. Sqrt(a) + i * Sqrt(a) = 32
@Farus-dm4tl3 күн бұрын
No way. If a is >0 -a is
@ganeshdas3174Ай бұрын
A short route can be √a(1 + i) = 32 √a = 32/(1 + i) a =[32/(1+i) ]^2 = 1024/2i = 512/i = - 512 i
@MR..mohamedelsayedАй бұрын
Trap equation. Notes...Wrong solution
@levskomorovsky17622 ай бұрын
There is no need to move the root of the minus to the right! If you square both parts of the original expression, the solution is much simpler
@МалиновыйЗакат-г6кАй бұрын
You will not record a 6 minutes video doing math in effective way.😂
@mauriziocernigliaro3177Ай бұрын
per me' e' errato perché se a>0 allora -a
@ricardomejias3629Ай бұрын
No existe en reales, pero sí en complejos@@mauriziocernigliaro3177
@Dreamteeam57Ай бұрын
@@МалиновыйЗакат-г6к Ooh I get it now 😅😅
@dougrutledge532Ай бұрын
If you take 10 minutes to do each math olympiad problém, you're not going to pkace very high
@johnbofarullguix14996 күн бұрын
1. Let x,y be 2 numbers, real or complex, that in turn build the complex a=x+1j*y that satisfies: (x+1j*y)^.5+(-x-1j*y)^.5=-32 2. Expanding and simplyfing : y^2-x^2-2*1j*x*y=512 the only way to carry on is zeroing either x or y 3. when zeroing x one ends up with a contradiction in the start expression : (1j*512^.5)+(-1j*512^.5)=32 So the only way forward is to zero y : -x^2=512 thus x=1j*512^.5
@rainerzufall4219 күн бұрын
Why do you mix integers with square roots? Even for the "long solution", it's more intuitive to combine the square roots: √a + √-a = 32 => √a² + 2 √a √-a + (√-a)² = a + 2 |a i| - a = 2 |a i| = 32² = 1024 => a = ± 1024 / 2 i = ± 512 i.
@bernysaudino6686 күн бұрын
No z² is not equal |z|² for z is complex in effect |z|²=z·conj(z)
@rainerzufall426 күн бұрын
@@bernysaudino668 I didn't say that, and yes, |z|² = z * conj(z). But here √-a = conj(√a). Thus √a √-a = 512 = 32² / 2. Example: a = 512 i. √a = 16 + 16 i √-a = 16 - 16 i = conj(√a) √a √-a = √a conj(√a) = |√a|² = |a| = 512 = 32² / 2. For a = - 512 i, you have the roles switched.
@rainerzufall426 күн бұрын
It definitely easier with polar coordinates, and less error prone...
@rainerzufall426 күн бұрын
The tricky thing here is, that multiplication by i rotates anti-clockwise, while √ goes both ways...
@sergiofernandez1164 күн бұрын
Using Euler's equation (e^ix = cos x + i sin x) yields an infinite number of solutions 512e^(-pi/4*i+(2pi*N)), Where N is an integer from 0 to infinity.
@nikolaspp51482 ай бұрын
The solution is not full, as (1+i) = sgrt 2× exp(i×(pi/4 + 2N×pi)....-(1+i)= sqrt 2 × exp (i×(5pi/4 +2 N×pi)
@AndreTewen2 ай бұрын
En adoptant la notation polaire des nombres complexes on a x = (|x|,arg(x)+2k.pi), k € Z. Les racines carrées de x sont donc (sqrt(|x|), arg(x)/2 + k.pi), avec k=0 ou k=1. D'où sqrt(a) correspond à 2 valeurs : pour k=0 nommée 0.sqrt(a) et pour k=1 nommée 1.sqrt(a). Ainsi l'equation posée est en fait une quadruple equation : 0.sqrt(a) + 0.sqrt(-a), 1.sqrt(a) + 0.sqrt(-a), 0.sqrt(a) + 1.sqrt(-a), 1.sqrt(a) + 1.sqrt(-a). 2 equations donnent 512i en solution et les 2 autres -512i.
@Jean-BaptisteOuflèАй бұрын
Thanks you very much
@zougaghabdelmajid54497 күн бұрын
(rac(a)+rac(-a))²=2rac(a)rac(-a)=32²=1024. I²rac(a)²=512. Soit rac(a)²=i²522. Ou encore a=+-i512.
@MrGeralt6710 күн бұрын
Just try to use these answers in equation. It doesn't work. sqrt(512i)+sqrt(-512i) = 16*sqrt(2i)+16*sqrt(-2i) = 16*(sqrt(2i)+sqrt(-2i)) - and it doesn't equal to 32
@koenraad46188 күн бұрын
√i = (1+i)/√2, and √(-i) = (1-i)/√2. Use this, and you will see that it does work. Keep in mind that √(512) = 32/√2. You will see that you get 32.
@MrMLehman7 күн бұрын
@@koenraad4618 Thanks. I was scratching my head until you clarified this.
@carlosjimenez28482 ай бұрын
El único número real para el que está definida la expresión √a+√-a es a=0 que, obviamente no es solución de la ecuación propuesta. Buscamos entonces una solución en los números complejos. √a+√-a=32 --> √a(1+i)=32 √a=16(1-i) --> a=-512i o también, √a+√-a=32 --> √a(1-i)=32 √a=16(1+i) --> a=512i Al comprobar las soluciones, hay que tener en cuenta que 512i y -512i tienen dos raíces cuadradas (opuesta una de la otra), por lo que sus sumas (miembro izquierdo de la ecuación) ofrecen cuatro posibilidades: 32, 32i, -32 y -32i. Lógicamente, la primera es la que corresponde a la ecuación propuesta: para √512i tomamos 16(1+i), descartando 16(-1-i) y para √-512i tomamos 16(1-i), descartando 16(-1+i)
@mcwulf252 ай бұрын
Square both sides. The a and (-a) cancel and after factoring the remaining term you get +/- 2ai = 32^2. a = +/- 32*16i = +/- 512i
@TheWuschelMUC2 ай бұрын
No. Let a be > 0. Then -a is
@tinatin7949Күн бұрын
Да, на западе другой подход к решению: схож с тем что в России, но другой. Меня учили в школе: из отрицательных чисел чётные корни не извлекаются. Да и никаких дополнительных буквы как i и сокращения DBS я не припоминаю. Yes, in the West there is a different approach to the solution: similar to what is in Russia, but different. I was taught at school: even roots are not extracted from negative numbers. And no additional letters like i and abbreviations I don't remember DBS.
@romanitartsssati4670Ай бұрын
Congs 👏👏👏The secret is proceeding step by step, needing no hurry👍
@abhinitkumar664118 күн бұрын
√ab = √a√b, for a≥0 and b≥0 √a+√-a=32 (square both sides) a -a + 2√a√-a = 1024 √a√-a = 512 (square both sides again, do not write √(a)(-a) = 512) -a² = 512*512 a = ± 512 i
@Katarzyna240Ай бұрын
Pięknie 😊z zastosowaniem wzorów skróconego mnożenia i przekształcaniem,skracaniem i redukcją 🧐podoba mi się 😊
@Yogut3k24 күн бұрын
pewnie taki jest klucz rozwiązania, ale wynik można dostać w bardziej uporządkowany sposób, jak pokazano wyżej.
@dumatel2 ай бұрын
(1+і)vā=32 Vā=16(1-i)=16 sqrt(2) exp(-pi/4)
@grandcrappyАй бұрын
High-level math peole are lucky af, can earn what they wish.
@bandarusatyanandachary1181Ай бұрын
Explanation is good. But competitive examination steps canbe reduced in view the good standard of olympiad students there by reduce the length of the video.
@robfrohwein298629 күн бұрын
Nice and more basic solution , very well explained with all steps!! I did it with complex numbers which has more pitfalls... fortunately i arrived at the correct result.
@akhtarabbasabbas46418 күн бұрын
It is simple.taking both square result will be +- 512 taking both side square equation will be a+a=(32)² 2a=+-1054 a=+-512
@kimutaiboit851618 күн бұрын
I prefer substitution. Let a=b² b+ib=32 b²+2ib-b²=1024 2ib²=1024 ib²=512 b²=512/i b²=-512i Since a=b² then b=±√a Therefore a=±512i
@kateknowles8055Ай бұрын
(a^½)(1-i) =32 (a^½)(1+i)=32 a^½= 32/(1-i) = 32(1+i) / (1-i)(1+i) = 32 (1+i)/2 = 16(1+i) a^½= 32 / (1+i) =32 (1-i) / (1+i)(1-i)= 32(1-i) /2 = 16((1-i) Two complex solutions with magnitude 2^9 and arguments pi/2, 3pi/2 So these are a = 512i and a= - 512i ( I found the earlier comments helped me to notice my first error which was halving arguments instead of doubling them)
@kateknowles8055Ай бұрын
A correction : two imaginary solutions (not complex)
@zakiater8 күн бұрын
la racine de a+la racine de-a=32 la racine dea+t laracine dea=32 a=32 au carre/(1+t )au carre
@davidbrown8763Ай бұрын
I did it in less lines. However this is the correct solution - tested by substitution.
@alvinrajs46686 күн бұрын
On transferring --1024a to the other side the sign changes to +. Hence the answer to be checked.
@joaowilsonvieira61967 күн бұрын
Socorro curió!😂
@georgech79145 күн бұрын
Почему бы сразу не предупредить, что a - это мнимое число? Тогда многие не стали бы возиться, пытаясь решить эту задачу. Ведь вся "красота" любой задачи заключается в том, чтобы результат оказался вещественным(действительным) числом, которые можно представить на числовой прямой.😀 Что является аналогом "мнимый"? Первый: "воображаемый", второй: "фальшивый", "ложный".
@ΒασιληςΑρετακης-μ2ψАй бұрын
Условии надо поставить:решить во множестве комплексных чисел.,т.к.во множестве действительных чисел решением является пустое множество.
Too long sqrt (a)+sqrt(-a)=sqrt a +i sqrt a sqrt a (1+i)=32 sqrt(a)=32/(1+i) a=(32/(1+i))^2 a=1024/2i= -512 i
@birgerschnoor4419Ай бұрын
that was my approach as well. much more intuitive and faster.
@dariuszb.9778Ай бұрын
Or geometrically on imaginary coordinate system knowing that sqrt(a) norm is equal to sqrt(-a) norm = 16 and phase angle sqrt(a) is Pi- phase angle of sqrt(-a) and these angles are halves of phase angles of a and -a where a and -a have phase angles differing by Pi.
4-9/2=5-9/2 (4-9/2)^2=(5-9/2)^2 16+81/4-72/2=25+81/4-90/2 16+81/4-36=25+81/4-45 -20=-20....so (4-9/2)^2=(5-9/2)^2 Squring √(4-9/2)^2=√(5-9/2)^2 4-9/2=5-9/2 4=5 So squring is false
@VVG-tq2nj2 ай бұрын
С точки зрения советской математической школы это бред!
@David_Lloyd-JonesАй бұрын
The Soviet Union has gone where the bindweed twines, so maybe you'd better come up with a piece of actual mathematical reasoning...
@VVG-tq2njАй бұрын
@@David_Lloyd-Jones, прежде чем мастурбировать на Советский союз, раскажите откуда взялся минус под √ ? И прежде чем глумиться на советской школой, сможете рассказать о чем теорема Пуанкаре, которую доказал советский математик Григорий Перельман?
@VVG-tq2nj10 күн бұрын
@@David_Lloyd-Jones, квадрат числа не может быть отрицательным. И математика не может быть политизированной. Нравится вам или нет, советская наука опередила время. То что изучают в западных унивеоситетах в России изучают в школах.
@MrGeralt6710 күн бұрын
@@David_Lloyd-Jones Just try to use these answers in equation. It doesn't work. sqrt(512i)+sqrt(-512i) doesn't equal 32
@tarcisiobomfim912 ай бұрын
Squaring the lefter member we can obtain de answer faster.
@solneeman5182 ай бұрын
Definitely
@maxime_09129 күн бұрын
No. I stopped at 1'10" because you made a mistake. (√a) ² not equal a, but | a |.. Also, you should know that to solve an equation, one must know the definition set.. 🙄
@eli37coАй бұрын
Correct result, long way. It is simple with complex numbers from the beginning.
@JohnPodesta-yu4tf17 күн бұрын
Factor i out of 2nd term and solve for sqrt a in one line. I solved it in 30 sec!
@SylviaVanderlay14 күн бұрын
Thanks for this video
@SPetrosyan19609 күн бұрын
Test the answers, prove it
@fsantosnetoАй бұрын
Well. Do now replacing 32 by i.
@Serghey_83Ай бұрын
Вот что я сразу увидел, так это каллиграфический почерк!!! Браво!
@ВладимирГречишкин-в7х2 ай бұрын
А где проверка этого решения, подстановкой ответов в уравнение?
@RobertGabor3 күн бұрын
I think it is everything starts wrong. We should present square of a and -a as R+iJ and -R-iJ because roots of C numbers could have multiple answers.
@erichendriks2807Ай бұрын
√a(1+i)=32 => √a=32/(1+i) With this as the first step it takes very little to finish the calculation.
@oo7521Ай бұрын
(a)^(1/2)+(-a)^(1/2)=32 ((a)^(1/2)+(-a)^(1/2))^2=a+2*(a)^(1/2)*(-a)^(1/2)-a =2ai=1024 ai=512 (a)^2=-(512)^2 a=512i or a=-512i
@荻野憲一-p7oАй бұрын
More easily, just squaring both sides, 32^2 = (√a + √-a)^2 = a +- 2√(-a^2) + (-a) = +- 2√(-a^2). Squaring again, 32^4 = 4(-a^2). So, a = +- √( 32^4 / (-4) ) = +- 512i. Be aware. √a √-a not= √(-a^2), √a √-a = +- √(-a^2). √(-a) not= (√a)i, √(-a) = +- (√a)i.
@fisti1208Ай бұрын
√a+√-a=2^5 √a+i√a=2^5 (√a+i√a)^2 = 2^10 a + 2 * √a * i√a - a = 2^10 2 * i * a = 2^10 i * a = 2^9 a = 2^9/i a^2 = 2^18/-1 = -(2^18) a = 512i and because i = -i: a = +- 512i
@lips71117 күн бұрын
Nice. But the music is too rich.
@ПавелГерманов-ь4яАй бұрын
Насколько нас хорошо учили в СССР! Хватило половины действий для ответа... Зачем так всё разжёвывать?
@paulvangastel866520 күн бұрын
Square both sides a + 2✓(-a^2) - a = 2^10 2ia = +/- 2^10 a = /+ i2^9 = +/ 512i
@mrdad185815 күн бұрын
How did "b" come into the equation?
@antgonsu18 күн бұрын
Por favor, para obtener ese resultado se pueden dar bastantes menos vueltas.😮
@RobertRoth-oj6zzАй бұрын
How did ever make it through algebra Seeing problems and solutions like this.?
@akoeng197921 күн бұрын
Solve it easier: root(a)+root(a)*i=32 Root(a)(1+i)=32 a=32^2/(1+i)^2= 32^2/2i
@dac37418 күн бұрын
Always check your answer because this one is incorrect,
@rainerzufall4219 күн бұрын
Two obvious solutions: a = ± 512 i. Are there more? Probably not.
@rainerzufall4219 күн бұрын
My quick check was to get a 45° complex number z = √a with Re(z) = 32/2 = 16. That is 16 + 16 i (negative 16 - 16 i). But a = z² = (16 + 16 i)² = 256 (1 + i)² = 256 * 2 i = 512 i (negative - 512 i).
I don't know why you made it so complicated: (√a+√-a)²=±32² (√a)²+(√-a)²+2√a*√-a=±32² a-a+2√-a²=±32² 2a√-1=±32² a=±512i
@tonyennis178718 күн бұрын
What did I do wrong? sqrt(a)+sqrt(-a) = 32 sqrt(a)+i*sqrt(a)=32 sqrt(a)(1+i)=32 ! factor the sqrt of a sqrt(a)=32/(1+i) +-a = 32^2/(1+i)^2 ! square both sides +-a=1024/(1+i+i+-1) ! FOIL the denominator +-a = 1024/2i +-a=512/i a=+-512/i womp
@Ivan__VladimirovichАй бұрын
И что в итоге мы получили? Множество неявных корней и 9 минут потраченных в пустую. 😂😂😂 Вот что происходит, когда занимаешься херней😂😂
@sahasukantaАй бұрын
Do u get any extra money by using an unnecessary lengthy process?
@befekadudebebe683317 күн бұрын
“It is easy, when you know it”. How about absolute beginners or who did math 30 years ago?
@PrajwalM-t1u4 күн бұрын
Sir can you answer for this question ie if 1÷a^2+1÷b^2 =1÷13 then a^2+b^2=
@haiderlughmani4 күн бұрын
Explain in next video.
@PrajwalM-t1u4 күн бұрын
@haiderlughmani thank you sir
@PavloDurov14 күн бұрын
Can be simplified if we square both sides at the beginning, no? √a + √(-a) = 32 SBS a - a + 2√a√(-a) = 1024 2√a√(-a) = 1024 √a√(-a) = 512 SBS a(-a) = 512² -a=512² a=-(512²) a=√(-512²) a=±512i
@p.narayananmulleria541614 сағат бұрын
4x4=16,4x - 4 = 16 16 + 16 = 32
@bigneiltooАй бұрын
Why is he writing the same opening line again?
@prof.samirghosh38117 күн бұрын
3 line ka math 1 page bana diya?
@carferАй бұрын
There is only one solution, not two, because the given solution is squaring the expression, and this method adds an additional solution that must be discarded. I think it's simplier to resolve doing the next: Sqr(a)+Sqr(-a) = 32 --> Sqr(a)+Sqr(a)*i = 32 --> Sqr(a)(1+i) = 32 --> Sqr(a)(1+i)*(1-i) = 32*(1-i) --> Sqr(a)*2 = 32*(1-i) --> Sqr(a)= 16*(1-i) --> Now squaring, for get "a": a = 16*(1-i)*16*(1-i) = 16^2*(1-i)^2 --> a = 2^8*(1-2*i-1) = -2^9*i = -512i (unique solution)
@dimkad744Ай бұрын
Range of acceptable values of the equation a>0 and -a>0, a>0 and a
@IvoNovacek-jq2lzАй бұрын
What the SQURING means?
@anis7862 ай бұрын
Let sqrt(a)=x. Then sqrt(-a)=xi. x+xi=32 x(1+i)=32 x=32/(1+i) ×(1-i)/(1-i) x=16-16i a=+/-512i
I got the same results (a different way), but I don't know how to verify that sqrt(2^9*i) + sqrt(-2^9*i) = 32, or that sqrt(-2^9*i) + sqrt(2^9*i) = 32.
@maison5.0Ай бұрын
The equation has no solution If a > 0 them -a
@michael.a.covington18 күн бұрын
Your background music is a well-known American Christian hymn, "Leaning on the Everlasting Arms." No offense taken, but I had never heard it in quite this context before :)
@AP-qt9cp10 сағат бұрын
i did it in 3 lines by squaring the original equation.🙃
@emha71002 ай бұрын
Das Quadrat jeder reellen Zahl kann nur positiv sein. Es gilt also nur der Hauptwert einer Quadratwurzel. Wenn diese Bedingungen beachtet werden, erhalte ich lediglich die Lösung 2 * ia = 1024 und somit a = -512i
@rainerzufall4219 күн бұрын
Das ist aber falsch! Wir ziehen eine Wurzel in IC, da muß man höllisch aufpassen! Die wesentliche Gleichung ist nicht 2 a i = 1024, sie ist ± 2 a i = 1024. Daraus ergibt sich a = ± 512 i. Überprüf's! Der Knackpunkt ist mMn 2 √a √-a = 2 |a i|, da die Wurzeln konjugiert sind. Wir suchen den positiven Realteil! Dieser wird aus Symmetriegründen sowohl mit a als auch mit -a erreicht! Der Imaginärteil der Summe ist dagegen 0.
@rainerzufall4219 күн бұрын
Das ist übrigens der Grund, warum fast jeder lieber mit Polarkoordinaten rechnet! Beim ersten Überfliegen hatte ich unbesehen mit 2 √a √-a = 2 a i weitergerechnet und den Fehler erst bemerkt, als dies eine positive Zahl sein sollte. Obacht!
@emha710019 күн бұрын
@rainerzufall42 Danke, dass du mich auf meine Fehler aufmerksam gemacht und meine Antwort korrigiert hast. Leider lernt man nur durch Fehler. Darum möchte ich mich für meine Narrheit entschuldigen!
@rainerzufall4219 күн бұрын
@@emha7100 Es gibt keine Narrheit, wenn man weiter nach der Wahrheit sucht. Freut mich, daß meine Ausführungen weitergeholfen haben. Es ist ein schmaler Grat zwischen hilfreich sein oder besserwisserisch. Hier gab es eine Stolperfalle, die wirklich böse ist! Wie Du bereits vorab korrekt erwähnt hattest, geht es darum, den Hauptwert der Wurzeln(n) zu beachten. Kurz gesagt: Die komplexe Wurzel erhält das Vorzeichen des Imaginärteils, egal was der Realteil sagt (außer für Re z = 0). D.h. in der komplexen Ebene bleiben Werte oberhalb der x(Re)-Achse dort und unterhalb bleibt dort. Werte im 1. und 2. Quadranten landen im 1. Quadranten und Werte im 3. und 4. Quadranten landen im 4. Quadranten. (rein negative realle Zahlen haben ihre Wurzel auf der positiven y(Im)-Achse) Was schon bereits eine Zahl kompliziert ist, wird zum Höllentrip bei Produkten. Bereits √-4 √-9 = ? ist tricky! Nix mit √a √b = √ab (die Antwort ist -6, also -√ab).
@SuperbettorАй бұрын
Abs (a) = root sqr (a)
@krishg60474 күн бұрын
Does olympiad want to waste time of students on one problem instead of using shortcut methods?
@Profe_Lauro2 күн бұрын
Está bien papa. Parece un examen de secundaria.
@БелАлекс2 ай бұрын
Ну вроде как обычная задача. На олимпиадную точно не тянет.
@andrekapamba3081Ай бұрын
Résoudre dans C!!!!
@rachid84752 күн бұрын
Très très long : dès le début l'équation peut s'écrire : racine carré de(a)+ i (racine carré de a) = 32 Ça sera plus simple
@ashar139Ай бұрын
Thanks
@MsIryLondonАй бұрын
Made a simple equation a super complicated one!🤦🏻♀️