Wow, not only was that a completely different proof than the ones i have seen before, it was much more intuitive, thank you.
@MichaelPennMath4 жыл бұрын
Thanks, I just filmed and edited a video of this identity for polynomials. It should be up in a few days.
@ayandeepbharadwqj26054 жыл бұрын
Michael Penn thanx a lot for the proof
@XxXMrGuiTarMasTerXxX4 жыл бұрын
Same thoughts here. Amazing proof!
@sounakroy19332 жыл бұрын
Best mathematicians combine intution without loss in generality.
@davidbrisbane72063 жыл бұрын
@3:30 ... I think this should be ... Since S is a nonempty set of positive integers, it has a minimum element d=ax+by by the *Well-ordering principle* rather than by the Archimedian principle.
@swatipandey7765 Жыл бұрын
yup same thought and its correct
@omarshaaban18874 жыл бұрын
first time i've seen such an approach to this identity. amazing work! thank you from Lebanon
@PunmasterSTP3 жыл бұрын
Greatest Common Divisor? More like Greatest, Coolest Description! Thanks so much for making all of these wonderful videos, and then sharing them.
@tushargarg47424 жыл бұрын
I just started the book by Joseph Gallian and got stuck on this proof. This video is really helpful. Thanks a lot.
@hjdbr10944 жыл бұрын
Excelent proof. Huge thanks from Brazil!
@georgesadler78303 жыл бұрын
Professor M. Penn ,thank you for a classic topic and selection of The GCD as a linear combination.
@wl41314 жыл бұрын
This guy does a good job talking through proofs. And from the videos I've watched, he subtlety gives motivation for definitions and theories. Which I think is a sizable pitfall in teaching modern mathematics.
@khbye24114 жыл бұрын
hello may I know what you mean by gives motivation for definitions and theories?
@wl41314 жыл бұрын
@@khbye2411 hello, so in math sometimes we are presented with theories that seem to have no motivation. Often it’s the case, the more math we learn the clearer the reason for those theories. Hence motivation to declare an idea a theorem
@theunknown42093 жыл бұрын
I'm working on Richard Hammack's book of proof and this video is a great compliment.
@atirmahmood70588 ай бұрын
Sir your explanations just make fall in love
@markbracegirdle71102 жыл бұрын
You can illustrate this on a spreadsheet, iteratively subtracting the small number from the larger. Eventually one of them is zero, and the other must be the GCD.
@davidbrisbane72063 жыл бұрын
Is Michael on the bridge of the USS Enterprise?
@swatipandey7765 Жыл бұрын
hey sir can u say me how did the q come at 6:20 when using the division algorithm?
@CharbelGPT Жыл бұрын
Thank you for the hard work
@proofbybri6877 Жыл бұрын
Why do we get the contradiction for r
@holyshit922 Жыл бұрын
In the CLRS Introduction to algorithms there is recursive algorithm for this
@jamesfortune2433 жыл бұрын
That proof was so intellectually satisfying!
@thomhughes46174 жыл бұрын
I’m a bit confused about having c|d implies d=gcd(a,b). Is it because we can apply this reasoning of c|d for any common divisor of a and b and the smallest number d for which this holds is by definition the gcd(a,b)?
@agrajyadav29512 жыл бұрын
Hey! I know I'm slightly late, but since d divides a and b, and c also does that, and c divides d, that means d>=c (d,c€N). And since we didn't make any assumptions about c other than its a natural no that divides a and b, and yet, d is greater or equal to it, hence, its the greatest common divisor. I hope this was clear
@sabirseikh85694 жыл бұрын
Finally found a proof huhh all the other KZbinrs are just giving examples
@davidbrisbane72063 жыл бұрын
Alternatively, you can use the Euclidean Algorthm to compute the gcd(a, b) and then reverse all the steps to discover that ax + by = gcd(a, b), but this is less elegant and more tedious.
@tilek44174 жыл бұрын
Wow, I remember seeing this proof in my math circle and not really understanding anything.
@JS-th1gi4 жыл бұрын
Hands down best explanation
@SANI-sp5gq4 жыл бұрын
Congratulations for 100k familys of mathematics.
@ren5124 Жыл бұрын
Could someone elaborate why r is less than d?
@willjohnston2959 Жыл бұрын
Think back to long division -- we keep going until the remainder is less than the divisor, otherwise we really haven't finished our division. For example, we don't say 53 divided by 4 is 10 with a remainder of 13, we say it is 13 with a remainder of 1. That is, we don't say 53 = 4(10) + 12, we say 53 = 4(13) + 1, where the r lies between 0 and 4.
@davidblauyoutube3 жыл бұрын
This is an ideal presentation.
@anonymoussloth66872 жыл бұрын
why did you prove that d divides a through all that? you claimed that d is the gcd(a,b) so by definition d has to divide a right?
@temirlanmaratov4664 Жыл бұрын
Thanks for all
@ibrahimkoz98815 жыл бұрын
Great, thx a lot from Turkey.
9 ай бұрын
from Morocco all respects and thanks
@gdudhdydhsudjdu6350 Жыл бұрын
i don't understand. we want to proof a.xo + b.yo=d but again we use a.xo + b.yo =d why ???
@1princess1113 жыл бұрын
Amazing explanation!
@kantaprasadsinha80253 жыл бұрын
Now, West aggressively started GCD as saying as Euclidean Algorithm. Thank u that you have not said that. Bezout' s identity is also named as Extended E Algorithm.
@wernergamper62003 жыл бұрын
No one cares
@DataMan22475 жыл бұрын
thanks from canada:)
@humester4 жыл бұрын
Can someone tell me why ax+by greater than 0 is a subset of the natural numbers. It seems to me that the expression would encompass all the natural numbers: 1, 2, 3, ... What am I not seeing?
@roflattheworld4 жыл бұрын
When he says 'subset of N', he does not necessarily mean that it is a strict/proper subset of N (that is, it *could* be N itself); however, it is yet unclear as to whether it is exactly N or just some part of N, noting that if it were always precisely N, then the proof would follow trivially (as gcd(a,b) is in N by definition).
@roflattheworld4 жыл бұрын
Consider a = 2, b = 4. Clearly - as we've defined that x,y are integers - any solution to our given form can only be an even integer, whereby we have at least one counterexample to S always being equivalent to N.
@ImranAhmed-kj9fz4 жыл бұрын
thank you soo much ! from india
@amnahali81713 жыл бұрын
great explaination
@arnabroy22473 жыл бұрын
Why r is less than d ?
@davidbrisbane72063 жыл бұрын
Suppose a = 17 and d = 6, so d does not divide a, as 6 doesn't divide 17. But, you can write 17 = 6(2) + 5. Here a = 17, d = 6, r = 5. So, a = d(q) + r. Notice that r can't be 6, because if it were, then 17 = 6(2) + 6 = 6(3) and then 6 would divide 17, which it obviously doesn't. Similarly, r can't be zero, because if it could be, than we could find an integer q such that 17 = 6(q) + 0 = 6q, and clearly there is no integer q that satisfies 17 = 6q. Putting it all together we have a = d(q) + r, where 0
@sauravgupta46392 жыл бұрын
@@davidbrisbane7206 as a sidenote, since the equation a = d.q + r is symmetric with respect to q, we can also write 0
@yousefalyousef593 жыл бұрын
let: 1/(a-b)(a+b)=A/(a+b)+B/(a-b) and form it ■A(a-b)+B(a+b)=1 ■a(B+A)+b(B-A)=1 Here are two cases of a Bezout's Lemma. say some thing about that.
@lki30233 жыл бұрын
Thank you Sir ☺
@siraj522 Жыл бұрын
Thank you
@wagsman99993 жыл бұрын
thanks, very clear
@gautamdebnathudp85353 жыл бұрын
Thanks from india .
@sanitizeyoureyes78413 жыл бұрын
Thanks
@lazyonigiri5665 Жыл бұрын
i don’t get it
@davidmeijer16453 жыл бұрын
I’m still watching….until the Good Place to Stop…?!?
@johnvandenberg88832 жыл бұрын
It’s the Well-Ordering Principle, not the Archemedian Principle 😃
@nahuelgomez71944 жыл бұрын
Great content! estas re mamado amigo
@Artaxerxes.4 жыл бұрын
good.
@AloeusCapitalManagem4 жыл бұрын
dafuq just happened
@wl41314 жыл бұрын
Lol Bezout's Identity
@davidbrisbane72063 жыл бұрын
Very clever 👏👏.
@nivaanand9844 жыл бұрын
for what we found gcd,any use
@ranjitsarkar31263 жыл бұрын
Never ask a mathematician for applications
@prathikkannan33243 жыл бұрын
@@ranjitsarkar3126 it’s all for fun and glory :)
@davidbrisbane72063 жыл бұрын
The GCD is used for a variety of applications in number theory, particularly in modular arithmetic and thus encryption algorithms such as RSA. It is also used for simpler applications, such as simplifying fractions.
@lillianrose46583 жыл бұрын
The hysterical substance microcephaly prefer because advertisement physically risk amid a knowledgeable teacher. normal, tacky peripheral