Number Theory | The GCD as a linear combination.

  Рет қаралды 45,805

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 71
@yashuppot3214
@yashuppot3214 4 жыл бұрын
Wow, not only was that a completely different proof than the ones i have seen before, it was much more intuitive, thank you.
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
Thanks, I just filmed and edited a video of this identity for polynomials. It should be up in a few days.
@ayandeepbharadwqj2605
@ayandeepbharadwqj2605 4 жыл бұрын
Michael Penn thanx a lot for the proof
@XxXMrGuiTarMasTerXxX
@XxXMrGuiTarMasTerXxX 4 жыл бұрын
Same thoughts here. Amazing proof!
@sounakroy1933
@sounakroy1933 2 жыл бұрын
Best mathematicians combine intution without loss in generality.
@davidbrisbane7206
@davidbrisbane7206 3 жыл бұрын
@3:30 ... I think this should be ... Since S is a nonempty set of positive integers, it has a minimum element d=ax+by by the *Well-ordering principle* rather than by the Archimedian principle.
@swatipandey7765
@swatipandey7765 Жыл бұрын
yup same thought and its correct
@omarshaaban1887
@omarshaaban1887 4 жыл бұрын
first time i've seen such an approach to this identity. amazing work! thank you from Lebanon
@PunmasterSTP
@PunmasterSTP 3 жыл бұрын
Greatest Common Divisor? More like Greatest, Coolest Description! Thanks so much for making all of these wonderful videos, and then sharing them.
@tushargarg4742
@tushargarg4742 4 жыл бұрын
I just started the book by Joseph Gallian and got stuck on this proof. This video is really helpful. Thanks a lot.
@hjdbr1094
@hjdbr1094 4 жыл бұрын
Excelent proof. Huge thanks from Brazil!
@georgesadler7830
@georgesadler7830 3 жыл бұрын
Professor M. Penn ,thank you for a classic topic and selection of The GCD as a linear combination.
@wl4131
@wl4131 4 жыл бұрын
This guy does a good job talking through proofs. And from the videos I've watched, he subtlety gives motivation for definitions and theories. Which I think is a sizable pitfall in teaching modern mathematics.
@khbye2411
@khbye2411 4 жыл бұрын
hello may I know what you mean by gives motivation for definitions and theories?
@wl4131
@wl4131 4 жыл бұрын
@@khbye2411 hello, so in math sometimes we are presented with theories that seem to have no motivation. Often it’s the case, the more math we learn the clearer the reason for those theories. Hence motivation to declare an idea a theorem
@theunknown4209
@theunknown4209 3 жыл бұрын
I'm working on Richard Hammack's book of proof and this video is a great compliment.
@atirmahmood7058
@atirmahmood7058 8 ай бұрын
Sir your explanations just make fall in love
@markbracegirdle7110
@markbracegirdle7110 2 жыл бұрын
You can illustrate this on a spreadsheet, iteratively subtracting the small number from the larger. Eventually one of them is zero, and the other must be the GCD.
@davidbrisbane7206
@davidbrisbane7206 3 жыл бұрын
Is Michael on the bridge of the USS Enterprise?
@swatipandey7765
@swatipandey7765 Жыл бұрын
hey sir can u say me how did the q come at 6:20 when using the division algorithm?
@CharbelGPT
@CharbelGPT Жыл бұрын
Thank you for the hard work
@proofbybri6877
@proofbybri6877 Жыл бұрын
Why do we get the contradiction for r
@holyshit922
@holyshit922 Жыл бұрын
In the CLRS Introduction to algorithms there is recursive algorithm for this
@jamesfortune243
@jamesfortune243 3 жыл бұрын
That proof was so intellectually satisfying!
@thomhughes4617
@thomhughes4617 4 жыл бұрын
I’m a bit confused about having c|d implies d=gcd(a,b). Is it because we can apply this reasoning of c|d for any common divisor of a and b and the smallest number d for which this holds is by definition the gcd(a,b)?
@agrajyadav2951
@agrajyadav2951 2 жыл бұрын
Hey! I know I'm slightly late, but since d divides a and b, and c also does that, and c divides d, that means d>=c (d,c€N). And since we didn't make any assumptions about c other than its a natural no that divides a and b, and yet, d is greater or equal to it, hence, its the greatest common divisor. I hope this was clear
@sabirseikh8569
@sabirseikh8569 4 жыл бұрын
Finally found a proof huhh all the other KZbinrs are just giving examples
@davidbrisbane7206
@davidbrisbane7206 3 жыл бұрын
Alternatively, you can use the Euclidean Algorthm to compute the gcd(a, b) and then reverse all the steps to discover that ax + by = gcd(a, b), but this is less elegant and more tedious.
@tilek4417
@tilek4417 4 жыл бұрын
Wow, I remember seeing this proof in my math circle and not really understanding anything.
@JS-th1gi
@JS-th1gi 4 жыл бұрын
Hands down best explanation
@SANI-sp5gq
@SANI-sp5gq 4 жыл бұрын
Congratulations for 100k familys of mathematics.
@ren5124
@ren5124 Жыл бұрын
Could someone elaborate why r is less than d?
@willjohnston2959
@willjohnston2959 Жыл бұрын
Think back to long division -- we keep going until the remainder is less than the divisor, otherwise we really haven't finished our division. For example, we don't say 53 divided by 4 is 10 with a remainder of 13, we say it is 13 with a remainder of 1. That is, we don't say 53 = 4(10) + 12, we say 53 = 4(13) + 1, where the r lies between 0 and 4.
@davidblauyoutube
@davidblauyoutube 3 жыл бұрын
This is an ideal presentation.
@anonymoussloth6687
@anonymoussloth6687 2 жыл бұрын
why did you prove that d divides a through all that? you claimed that d is the gcd(a,b) so by definition d has to divide a right?
@temirlanmaratov4664
@temirlanmaratov4664 Жыл бұрын
Thanks for all
@ibrahimkoz9881
@ibrahimkoz9881 5 жыл бұрын
Great, thx a lot from Turkey.
9 ай бұрын
from Morocco all respects and thanks
@gdudhdydhsudjdu6350
@gdudhdydhsudjdu6350 Жыл бұрын
i don't understand. we want to proof a.xo + b.yo=d but again we use a.xo + b.yo =d why ???
@1princess111
@1princess111 3 жыл бұрын
Amazing explanation!
@kantaprasadsinha8025
@kantaprasadsinha8025 3 жыл бұрын
Now, West aggressively started GCD as saying as Euclidean Algorithm. Thank u that you have not said that. Bezout' s identity is also named as Extended E Algorithm.
@wernergamper6200
@wernergamper6200 3 жыл бұрын
No one cares
@DataMan2247
@DataMan2247 5 жыл бұрын
thanks from canada:)
@humester
@humester 4 жыл бұрын
Can someone tell me why ax+by greater than 0 is a subset of the natural numbers. It seems to me that the expression would encompass all the natural numbers: 1, 2, 3, ... What am I not seeing?
@roflattheworld
@roflattheworld 4 жыл бұрын
When he says 'subset of N', he does not necessarily mean that it is a strict/proper subset of N (that is, it *could* be N itself); however, it is yet unclear as to whether it is exactly N or just some part of N, noting that if it were always precisely N, then the proof would follow trivially (as gcd(a,b) is in N by definition).
@roflattheworld
@roflattheworld 4 жыл бұрын
Consider a = 2, b = 4. Clearly - as we've defined that x,y are integers - any solution to our given form can only be an even integer, whereby we have at least one counterexample to S always being equivalent to N.
@ImranAhmed-kj9fz
@ImranAhmed-kj9fz 4 жыл бұрын
thank you soo much ! from india
@amnahali8171
@amnahali8171 3 жыл бұрын
great explaination
@arnabroy2247
@arnabroy2247 3 жыл бұрын
Why r is less than d ?
@davidbrisbane7206
@davidbrisbane7206 3 жыл бұрын
Suppose a = 17 and d = 6, so d does not divide a, as 6 doesn't divide 17. But, you can write 17 = 6(2) + 5. Here a = 17, d = 6, r = 5. So, a = d(q) + r. Notice that r can't be 6, because if it were, then 17 = 6(2) + 6 = 6(3) and then 6 would divide 17, which it obviously doesn't. Similarly, r can't be zero, because if it could be, than we could find an integer q such that 17 = 6(q) + 0 = 6q, and clearly there is no integer q that satisfies 17 = 6q. Putting it all together we have a = d(q) + r, where 0
@sauravgupta4639
@sauravgupta4639 2 жыл бұрын
@@davidbrisbane7206 as a sidenote, since the equation a = d.q + r is symmetric with respect to q, we can also write 0
@yousefalyousef59
@yousefalyousef59 3 жыл бұрын
let: 1/(a-b)(a+b)=A/(a+b)+B/(a-b) and form it ■A(a-b)+B(a+b)=1 ■a(B+A)+b(B-A)=1 Here are two cases of a Bezout's Lemma. say some thing about that.
@lki3023
@lki3023 3 жыл бұрын
Thank you Sir ☺
@siraj522
@siraj522 Жыл бұрын
Thank you
@wagsman9999
@wagsman9999 3 жыл бұрын
thanks, very clear
@gautamdebnathudp8535
@gautamdebnathudp8535 3 жыл бұрын
Thanks from india .
@sanitizeyoureyes7841
@sanitizeyoureyes7841 3 жыл бұрын
Thanks
@lazyonigiri5665
@lazyonigiri5665 Жыл бұрын
i don’t get it
@davidmeijer1645
@davidmeijer1645 3 жыл бұрын
I’m still watching….until the Good Place to Stop…?!?
@johnvandenberg8883
@johnvandenberg8883 2 жыл бұрын
It’s the Well-Ordering Principle, not the Archemedian Principle 😃
@nahuelgomez7194
@nahuelgomez7194 4 жыл бұрын
Great content! estas re mamado amigo
@Artaxerxes.
@Artaxerxes. 4 жыл бұрын
good.
@AloeusCapitalManagem
@AloeusCapitalManagem 4 жыл бұрын
dafuq just happened
@wl4131
@wl4131 4 жыл бұрын
Lol Bezout's Identity
@davidbrisbane7206
@davidbrisbane7206 3 жыл бұрын
Very clever 👏👏.
@nivaanand984
@nivaanand984 4 жыл бұрын
for what we found gcd,any use
@ranjitsarkar3126
@ranjitsarkar3126 3 жыл бұрын
Never ask a mathematician for applications
@prathikkannan3324
@prathikkannan3324 3 жыл бұрын
@@ranjitsarkar3126 it’s all for fun and glory :)
@davidbrisbane7206
@davidbrisbane7206 3 жыл бұрын
The GCD is used for a variety of applications in number theory, particularly in modular arithmetic and thus encryption algorithms such as RSA. It is also used for simpler applications, such as simplifying fractions.
@lillianrose4658
@lillianrose4658 3 жыл бұрын
The hysterical substance microcephaly prefer because advertisement physically risk amid a knowledgeable teacher. normal, tacky peripheral
Number Theory | Fermat's Little Theorem Example 1
5:14
Michael Penn
Рет қаралды 21 М.
A questionable factorial problem
18:46
Michael Penn
Рет қаралды 7 М.
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
Bézout's identity: ax+by=gcd(a,b)
18:20
blackpenredpen
Рет қаралды 88 М.
Abstract Algebra:  Division Algorithm Proof
13:06
qncubed3
Рет қаралды 3,4 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 415 М.
Number Theory | Wilson's Theorem
9:12
Michael Penn
Рет қаралды 74 М.
Number Theory: Queen of Mathematics
1:02:35
Gresham College
Рет қаралды 309 М.
Why There's 'No' Quintic Formula (proof without Galois theory)
45:04
not all wrong
Рет қаралды 551 М.
Imaginary numbers aren't imaginary
13:55
Ali the Dazzling
Рет қаралды 290 М.
Euclidean Algorithm (Proof)
8:50
Math Matters
Рет қаралды 117 М.