Can someone tell me why in the binary numbers with shaving to empty sequence it's is becoming 0? Because in the setup the shaved outcome for single head/tail gets to a zero size run, an empty set. Making it 0 is not a zero run but a 1 run..
@anon65143 жыл бұрын
@@christianherrmann It seems legit if you expect a number on the right every time. Zero is natural choice for the value of a number with no digits. The only alternative is set the planing operation to be undefined on sequences with no repetition. Either are fine in my opinion. In the null case, the note on the piano would just be a pause.
@johnjeffreys64403 жыл бұрын
Do you guys take suggestions for video topics?
@mayukhpurkayastha26493 жыл бұрын
Please sir next content Bangladeshi child soborno isaac bari🇧🇩🇧🇩🇧🇩🇧🇩
@RameshRamesh-ut9lj3 жыл бұрын
Hi
@hzr65973 жыл бұрын
'My study is very messy' 18 years to find a letter.
@christosvoskresye3 жыл бұрын
I can relate.
@AbhijayPaul3 жыл бұрын
Imagine being content with the fact that he never read your letter only for him to find it almost 2 decades later
@christosvoskresye3 жыл бұрын
@@AbhijayPaul I would have blamed the post office.
@jk232333 жыл бұрын
Imagine the letter contains a proof of the Riemann hypothesis...
@christosvoskresye3 жыл бұрын
@@jk23233 If you have a proof for that, you need to make it public, not send it in a private letter. The letter would constitute a terrible temptation to claim it for oneself.
@mytube0013 жыл бұрын
I propose that the inverse rabot should be called "veneer". Applying a new layer instead of shaving one away.
@aenetanthony3 жыл бұрын
I agree with this
@PaulSmith-zs5je3 жыл бұрын
le vernis
@JoeTaber3 жыл бұрын
Ding ding ding!
@phiIippejean3 жыл бұрын
@@PaulSmith-zs5je vernis is more like varnish, a wood veneer translation is placage
@Восьмияче́йник3 жыл бұрын
bof, je préfère vernis
@joshuamiller55993 жыл бұрын
“Does every number appear? Yeah, sure.” Best proof ever.
@mads_in_zero3 жыл бұрын
The "sure, why not?" conjecture.
@hilbert_curve36803 жыл бұрын
I guess for every number in binary just duplicate each digit in place: 100110 -> 110000111100 101 -> 110011 1 -> 11 and so on. Applying le rabot to it reverses this transformation.
@Tefans973 жыл бұрын
@@hilbert_curve3680 wouldn't you just add one to each sequence rather than duplicating it? Apart from that, it makes sense
@Fay-cd8ik3 жыл бұрын
He went on to explain why...the expanded sequence part. 😊
@cosmicvoidtree2 жыл бұрын
It’s also fairly simple to reason about why you get infinitely many of every number.
@clutchyfinger3 жыл бұрын
This man is clearly an immortal, 18 years is but a moments time for him.
@peterfireflylund3 жыл бұрын
He doesn't look like an 81-year-old, does he?
@Triantalex11 ай бұрын
false.
@Denema1233 жыл бұрын
That Conway piano and the logo. Excellent tribute.
@achtsekundenfurz78762 жыл бұрын
08:12 Conway & sons -- a reference to both Steinway & sons and John Conway, the inventor of the cellular automaton called "Game of Life." The logo is a glider, a shape in that automaton that recreates itself at a different location.
@MegaPhester3 жыл бұрын
It's so cool that the riff established at the beginning of the sequence always comes back on the beat, since that part of the sequence only comes back at multiples of 16. Makes it feel like a composition. The fact that the melody happens to sound phrygian-ish is hilarious as it makes it sound like thrash metal.
@benedictul3 жыл бұрын
Not gonna lie, it kinda reminds me of something on Megadeth's Rust in Peace - or maybe Slayer? Just alter the time signature a bit and you got a hit imo.
@danielpalma72793 жыл бұрын
at 100 bpm sounds metal af
@recklessroges3 жыл бұрын
Who ever chose "Conway & Sons" for the piano name,,, thank you. (I'm not crying.)
@MrDizzle7153 жыл бұрын
Can you explain please? Idk what that references.
@renagonpoi57473 жыл бұрын
@@MrDizzle715 Conway is the mathematician behind the game of life and the problem associated with it. He has made multiple appearances in Numberphile. Sadly he passed away last year due to CoVID.
@ServentForAnubis3 жыл бұрын
I also like how it had the glider as the logo.
@todorkolev75653 жыл бұрын
@@renagonpoi5747 thanks for explaining. I am ridiculously bad at picking up references :D Even though I am a huge nerd for Game of Life!
@AaronRotenberg3 жыл бұрын
@@todorkolev7565 Also, it's a pun on Steinway & Sons, a famous piano manufacturer.
@KevinLarsson423 жыл бұрын
7:10 DJ Neil Sloane - Le Rabot (Mod88 Remix)
@imademedikasurya39173 жыл бұрын
Hello
@KevinLarsson423 жыл бұрын
@@imademedikasurya3917 Hello to you :D
@Rodhern3 жыл бұрын
If you want to go Mod88, and we all do, I would have chosen the middle of the keyboard as zero, maybe say 440Hz as the zeroth note.
@KevinLarsson423 жыл бұрын
@@Rodhern yeah I had the same thought when I listened to it
@musik3503 жыл бұрын
more like opus clavicembalisticum - preludio corale - quasi pedali soli
@impendio3 жыл бұрын
I actually like how dramatic the sequence sounds, I’m a huge sucker for experimental stuff and breaking data sets into music is a very interesting prospect to me.
@idjles3 жыл бұрын
7:13 the piano‘s name and logo brought tears to my eyes.
@PhngluiMglwnafh3 жыл бұрын
I love how delighted Neil Sloane gets over integer sequences. He didn't just create the OEIS, he is the OEIS
@KurtSchwind3 жыл бұрын
Huge props for the game of life reference on the piano.
@csababekesi-marton23933 жыл бұрын
I always enjoy Mr. Sloane's lectures as nothing else. Cheerful, highly intelligent and interesting. His personality is ideal for being a professor.
@wiseSYW3 жыл бұрын
it sounds pretty metal. even "binary rabot" sounds like a metal band name!
@MaximeJean943 жыл бұрын
Pretty sure that calling that expanding transformation "inverse Rabot" is incorrect. The rabot can delete runs, the expanding can not create new ones. Expanding 0 just gives you 00 which is 0, but there are plenty of ways to get to 0 with the rabot. Doing expanding then rabot gives you the starting number, but not the other way around, for instance expanding 1010 gives you 11001100 and rabot that you get 1010, but rabot 1010 gives you 0 and reexpanding that gives you 0.
@miikavihersaari31042 жыл бұрын
That's true. However, this same property applies to differentiation, yet it's considered the inverse operation to integration.
@beesnation50082 жыл бұрын
The term for that is a one-sided inverse.
@lachlanstewart93143 жыл бұрын
If I go too long without these episodes... I get sloanely :(
@buzzzysin3 жыл бұрын
That certainly is an interesting bassline
@jimoubenremouga95463 жыл бұрын
That man is so chill that i want him to be my math teacher
@Bronco5413 жыл бұрын
For some reason everyone of these sequence videos feels like he is revealing a surprising secret of the universe. Its very exciting
@razieldolomite6983 жыл бұрын
The musical transposition was awesome. Never before have numbers sounded so menacing
@ralfoide Жыл бұрын
Mr. Sloane can magically transform a sequence of numbers into an amazing story. That was truly interesting. _Il n'y a rien à raboter dans cette histoire ;-) ... Merci Mr. Sloane !_
@stkyriakoulisdr3 жыл бұрын
The real nugget in this video is that the piano reads "Conway and sons" instead of "Steinway and sons"
@Desmaad3 жыл бұрын
R.I.P. Conway.
@tsquaredtest13 жыл бұрын
7:14 "Conway and Sons" LOL Very Clever. I would replace any Steinway with one of these
@dhoyt9023 жыл бұрын
Only OEIS fans know the thrill of seeing "N.J.A. Sloane has published your changes to Axxxxxx" in one's email.
@sghuisman3 жыл бұрын
Can relate!
@Xonatron3 жыл бұрын
I made it in too!
@bsharpmajorscale3 жыл бұрын
Yes! It makes me feel like a real part of the mathematical community! I had a sequence that I submitted because I was playing around with concatenating even numbers and counting the digits. Probably because I wanted to do some crazy stuff for Four 4s. It was really great.
@Triantalex11 ай бұрын
false.
@Mr_Inconsequential3 жыл бұрын
Imagine that one guy waiting on reply to this letter he sent 18yeats ago
@BluishGreenPro3 жыл бұрын
I wonder what are the best “tunes” the OEIS has to offer? Also, those Mandelbrot prints are really nice
@avisternlieb4493 жыл бұрын
You can use the keyword "hear" in OEIS to see the ones they recommend listening to! Neil Sloane's favorite to listen to is Recaman's Sequence (A005132). There's also a Sloane Numberphile video on it!
@numberphile3 жыл бұрын
We’ve made videos about others that sound good.
@jazzabighits44733 жыл бұрын
@@numberphile is there a playlist? :o
@cxpKSip3 жыл бұрын
@@avisternlieb449 It wasn't Sloane, I don't think...
@achtsekundenfurz78762 жыл бұрын
There should be an OEIS sequence of all sequences sounding like music.
@edskev76963 жыл бұрын
The sequence is OEIS A318921
@TRIC4pitator3 жыл бұрын
Final boss music
@ButzPunk3 жыл бұрын
I think the inverse of the _rabot_ should be _bora,_ following the long French tradition of transposing a words' syllables to create new words (cf. «l'envers» → «verlan»).
@davemarm3 жыл бұрын
You mean borat?
@sanofy3 жыл бұрын
The verlan version of a word has the same meaning as the original word. bora would mean rabot.
@danamulter3 жыл бұрын
I have no idea what he's talking about, but his enthusiasm is infectious.
@kennethleitner13373 жыл бұрын
to add on a thin layer (the opposite of planing off a thin layer) is to veneer: placage in French
@mrsmartypants91363 жыл бұрын
Or is it just planing with a poor quality tool? It has the opposite effect of planing: the wood becomes less smooth!
@KevinLarsson423 жыл бұрын
Those animations in this video are amazing!
@astromus3 жыл бұрын
"Conway and Sons" - What a wonderful tribute!
@johnchessant30123 жыл бұрын
The (3/2)^k - 1/2 pattern is so expected and unexpected at the same time
@venceremosallende4223 жыл бұрын
Gosh there could be a whole netflix series on the OEIS....
@zidanez213 жыл бұрын
Some viewers of Numberphile are younger than the time he took to finally see that letter
@curtiswfranks3 жыл бұрын
This inspires me: It might take me eighteen years, but I will get back to it (whatever 'it' is) someday.
@TG-ru8wl3 жыл бұрын
It started with the Mendelbrot set video and now I'm just addicted to Numberphile.
@josephjohannes32403 жыл бұрын
Me during the first half of the video: "I have no idea where this is going" Me at 7:15 : _oh_
@glowingfish3 жыл бұрын
Same thing---I thought this was pointless until I got to the music.
@archivist173 жыл бұрын
I like listening to sequences. Beautiful idea.
@SquirrelASMR2 жыл бұрын
I used to subconciously videos of this guy were filmed in a tent at the world math circus, but I just recently realized it was just because his wallpaper has stripes.
@kateorman2 жыл бұрын
I couldn't sleep, so I listened to this in the middle of the night, and the music scared the living daylights out of me!
@cidercreekranch3 жыл бұрын
Sticking with the woodworking theme, you could call the expansion operation the process of laminating a number onto the existing numbers.
@kane27423 жыл бұрын
Yeah, I was thinking it could be the French word for "veneer."
@bazzad813 жыл бұрын
@@kane2742 that would be ‘placage’
@dro567893 жыл бұрын
This binary planing sounds like a Doom song...
@wagglebutt3 жыл бұрын
I was thinking Peter Gunn.
@hamishlivo3 жыл бұрын
Metallica riff
@macronencer3 жыл бұрын
Yes! My first reaction was that it sounded "a bit metal".
@chrisa42843 жыл бұрын
videos with Neil Sloane = instant watch + like
@miokelphelts13 жыл бұрын
Check out Keith Jarrett's solo piano Vienna Concert Part 1 ~25:00-31:00, July 13, 1991. Never made sense to me until I saw this video.
@ericaferro95563 жыл бұрын
Eerily similar.
@Eulercrosser3 жыл бұрын
To get the sequence A027649, you must first make the sequences an integer sequence by multiplying by 2^(k-1), where k is the number of bits.
@h.-.-3 жыл бұрын
Where can I find the 10hr clip of this piano track?
@livedandletdie3 жыл бұрын
Nothing beats a Neil Sloane videos. If you didn't release anything but videos with Neil, there would not be any boring videos on this channel.
@alvarogaliana32713 жыл бұрын
ahhh, the sequence guy! i love these!
@RandyKing3143 жыл бұрын
The Sloane videos never disappoint 👍👍👍
@BryanLeeWilliams3 жыл бұрын
I love Neil's videos
@landlord213 жыл бұрын
Man I wish I had friends like this guy
@edsanville3 жыл бұрын
We need a video "3 hours of Rabot's sequence music"
@sparkmagea993 жыл бұрын
"It has a great sound"; proceeds to talk over it so we can't hear it haha
@expomath93483 жыл бұрын
Always an amazing content ! Big up from France Numberphile 😘😘
@jeeaspirant-abhi13943 жыл бұрын
This channel best for mathematical specially.
@andrewgalbreath21013 жыл бұрын
Combining my two favorite hobbies: Math and woodworking!!
@paulofernandes13753 жыл бұрын
Play that on an electric guitar, it would sound metal af!
@deckydoodle67923 жыл бұрын
I love Neil Sloane!!
@cajcsfsa3 жыл бұрын
Wow!! Impressive impressive and amazing dedication
@christophecarpentier97973 жыл бұрын
As a French viewer, hearing "_le rabot_" pronounced so solemnly feels both weird and majestic.
@marklemoine16343 жыл бұрын
That piano animation is astounding!
@mkwilson13943 жыл бұрын
Feels like E phrygian perhaps? The b2 is really prominent with all of the 1s. Nice pedal point!
@Krebzonide3 жыл бұрын
You should do a video on how QR codes work with their masking and error correction stuff.
@WhyDontYouBuildit3 жыл бұрын
Maths and my favourite tool in one video. Wow!
@tonaxysam3 жыл бұрын
The song is very catchy :D "Le rabot" operations is very interesting indeed
@InTheBeginningTheUniverseWas3 жыл бұрын
haven't watched the video yet, but since it's Neil you know it's going to be amazing
@deeprecce98523 жыл бұрын
I conjecture that papers and books in Mr Sloane's room contain more numbers than alphabets!!
@Marguerite-Rouge3 жыл бұрын
I really like the sound of the sequence ! It reminds me Philip Glass music.
@omikronweapon3 жыл бұрын
If you imagine Neil's mind to have a soundtrack like this, suddenly a lot falls into place :)
@macronencer3 жыл бұрын
8:15 The name and logo on that piano are priceless!
@MrJdsenior3 жыл бұрын
"2003 it arrived, I only just found it on the floor" LOL, with ya there, my friend :-) I've seen a composition, done by Peter Bence for a school (music college) project that was inspired by the Fibonacci sequence, but yours is the first I've seen that actually PLAYS the sequence, directly, from a simple one to one ratio of key positions to sequence. Clever, I'm going to pass this on to a few people and see what happens, will let you know with a link if anything does. :-)
@martinfisker74383 жыл бұрын
That piano animation must have taken ages
@SO3rl3 жыл бұрын
I see Neil Sloane, I click, and I like.
@user-vn7ce5ig1z3 жыл бұрын
7:17 - That music sounds like a chase-scene from an action-thriller. 🤔 I assume it's not copyrighted… 🤨 It sounds even better at 2× speed. 😉
@vincentproud65893 жыл бұрын
That music sounds so spooky, like a scary moment from a horror game or a chase scene.
@Logicallymath3 жыл бұрын
A full 12-minute video YAY!!!!!!
@marcelheymuth2113 Жыл бұрын
"Conway and Sons" on the Grand Piano is great! RIP John
@cetyl26263 жыл бұрын
Pretty cool. The music really feels like the binary structure
@grahamumbo90593 жыл бұрын
I was never taught this for A-level. No wonder I don't understand it so why do I find it so fascinating?
@matanshtepel12303 жыл бұрын
nice animations!
@nijiru44483 жыл бұрын
The music for the binary sounds like it would be awesome for a haunted house. :3
3 жыл бұрын
Here's something I quickly came up with: · Make a list of numbers and put 1 into it. · Repeatedly: Multiply any number in the list with any power of 2 and add any number from the list to it which is smaller than half of that power of 2, then put the result into the list. · Finally (whenever you don't want to continue with the step above anymore), only multiply each number in the list with any power of 2, without adding anything. With this method, you should be able to reach every number whose binary representation "flattened" turns into 0 and no other numbers, right? Example: Your list is {1,101,1001}, you pick 1001, multiply it by 10000 and add 101 (5
@LeventK3 жыл бұрын
Teacher: The test isn't that confusing. The test:
@qwvpv3 жыл бұрын
9:24 perhaps a "Veneer", is a woodier and more metaphorical opposite to planing, than "Expanding". Planing Veneering Le Rabot Le Vernis (disclaimer: I am not french, so there may be a better translation out there!)
@RaineQi3 жыл бұрын
Watching the binary series getting planed I caught a pretty sequence unfolding, the number of shavings. The number of runs in each term for the binary sequence goes 1,1,2,1,2,3,2,1,2,3,4,3,2,3,2,1,2 Continued it goes (2),3,4,3,4,5,4,3,2,3,4,3,2,1,... On a graph it makes lovely peaks and valleys because the difference between consecutive terms is 1. I wonder of it remains 1 throughout the sequence...
@RaineQi3 жыл бұрын
I think there's a pattern to the peaks and valleys too The first peak doesn't exist because its 1,1 so its 0 The next peak is 2, there is 1 term between the 1s The next peak is 3, there are 3 terms between the 1s before and after 3 The next peak is 4 which has 7 terms before it goes back to 1 The next peak is 5 which has 15 terms before it goes back to 1 again The new sequence is 0,1,3,7,15,... So the next term is defined as double the previous plus 1. Doesn't this have a name?
@BryanWLepore3 жыл бұрын
[ hmmm... all these OEIS sequences are compelling subjects for musical exploration ] 7:08 “... and I would like to play this sequence for you.” Stunning... It sounds like 4/4 time ... I wonder how the time signature or meter is determined...
@joedeshon3 жыл бұрын
OMG. 7:02 Neil channelling the spirit of John Williams, the composer of the Jaws theme! I need to use this in the chase sequence of my next horror film!
@user-vn7ce5ig1z3 жыл бұрын
Except Williams didn't write the Jaws theme, the hack just ripped of Dvorak's _Allegro con fuoco._ ¬_¬
@skyscraperfan3 жыл бұрын
How do you expand zero ones or zeroes?
@jweezy1014913 жыл бұрын
I feel like the expanding operation and the planing operation are not inverses. When Neil said you can do one, then the other, and get back to where you started, I'm not sure that's correct. If I have 101, and I plane it, I get 0. If I then expand, I get 00 or 0, not 101. It is true if you expand first, then plane second. 101 -> 110011 -> 101. Because of this, I don't think Neils proof that this sequence hits all numbers is correct. If we take all the binary numbers and plane them, then expand the results, we do not get back the binary numbers we started with. Correct me if I am wrong, but it seems that proof requires a 2-way relationship between the expand and plane functions, not the the 1-way relationship we see.
@sageinit3 жыл бұрын
Should try planing down the three main number sequences derivable from the plastic number - in balanced ternary.
@c434rdd4103 жыл бұрын
so,this video is not for woodworking hand plane sequence?
@L1N3R1D3R3 жыл бұрын
I'm pretty sure the inverse isn't surjective (onto), since the planing process can remove individual numbers and there isn't any way to tell how many runs there were. See how many 0's there were after planing; how do you invert that process to get back to each individual number? Sure, adding one to every string is bijective, but that's not the same process as the inverse of removing one from every string when the domain is every possible sequence of numbers, not just the ones with strings of more than 1 in length. You seemed to spend no time on this point when it's more complicated than that.
@cosmicvoidtree3 жыл бұрын
The sequence number of the planed binaries is A318921.
@trizgo_3 жыл бұрын
OMG EXCITEMENT I LOVE SLOANE VIDS
@pedrofellipe80283 жыл бұрын
Can we get a metal cover of this?
@literallylegendary3 жыл бұрын
"Conway and Sons" with a Conway Life glider is an awesome reference to Conway's Game of Life