I must say the way mr. Woo presents math is great. I wish I had a teacher like him.
@izakj50946 жыл бұрын
Josip Šajrih you do now :)
@michaelempeigne35192 жыл бұрын
to find a slant asymptote, i find using only limits works : a = lim ( x -- > inf ) [ f ( x ) / x ] = lim ( x -- > inf ) [ ( 1 - x^2 ) / x^2 ] = lim ( x -- > inf ) [ ( 1 / x^2 ) - 1 ] = lim ( x -- > inf ) [ ( 1 / x^2 ) ] - 1 = 0 - 1 = - 1 b = lim ( x -- > inf ) [ f ( x ) - ax ] = lim ( x -- > inf ) [ ( 1 - x^2 ) / x + x ] = lim ( x -- > inf ) [ ( 1 - x^2 + x^2 ) / x ] = lim ( x -- > inf ) [ 1 / x ] = 0 the slant asymptote is y = ax + b = - x + 0 = - x
@yoavshati6 жыл бұрын
10:03 It's called a curvilinear asymptotes in general, or a parabolic asymptote in this case
@andrewps3396 жыл бұрын
(1-x^2)/x is -x with a remainder. The remainder always approaches 0 so it’s not useful. Which means the oblique asymptote is -x. What was the point of the calculus. I would like to know. Thank you
@021sunnykumar56 жыл бұрын
sir graphically how we can say that integration of (cos x ) 0 to infinity is 1