Here's a trigonometric solution: Let AC = b as you did. Then tan x = 9/b and tan 2x = b/12. But tan 2x = (2 tan x)/(1 - tan^2(x)); so b/12 = (18/b)/(1 - 81/b^2) = (18/b)/((b^2 - 81)/b^2); invert the divisor and multiply: b/12 = (18/b)((b^2)/(b^2 - 81)) = (18 b^2)/(b)(b^2 - 81); factor out b on the right: b/12 = (18 b)/(b^2 - 81); cross-multiply: (b)(b^2 - 81) = (12)(18)(b); factor out b again and collect terms on both sides: b^2 - 81 = 216; add 81 to both sides: b^2 = 216 + 81 = 297 = (9)(33); so b = √((9)(33)) = 3√33, which agrees with your answer. From there we proceed as you did, invoking Pythagoras twice to get BC = 21 and AC = 3√42. Cheers! 🤠
@luigipirandello59196 ай бұрын
Nice. Thank you.
@ALIabyazu Жыл бұрын
It was great
@harikatragadda Жыл бұрын
A circle passes through A and C such that B is the center since AC as a chord subtends angle X in its reflection and 2 X at the center B. Hence the radius of this circle is BC = 9+12 = 21. Now its easy to calculate using Similarity of ∆ADC, ∆ACE and ∆CDE CD² = AD*DE= 9*33 CD = 3√33 AC/AD = AE/AC AC² = 9*42 AC= 3√42
@Nature-Melody2106 Жыл бұрын
💥Nice solution💖💖💖
@KAvi_YA666 Жыл бұрын
Thanks for video.Good luck sir!!!!!!!!!!!!!!!!!
@noamrtd-g4f Жыл бұрын
You can also say the following: DC = 12Tan(2x) & DC = 9/Tan(x) By using the Double angle formula we can get that Tan(2x) = (2tan(x))/(1-tan^2x) So we can say that : DC = 12*(2tan(x))/(1-tan^2x) & DC = 9/Tan(x) Thus: 12*(2tan(x))/(1-tan^2x) = 9/Tan(x) From here by solving, we can get that tan(x) = sqrt(3/11) => x = 27.57 From here it's just simple trigonometry to calculate DC, and then we can use Pythagoream theorem for AC & BC Amazing videos! Keep it up! ❤
@tombufford136 Жыл бұрын
I solved this in a similar method, though it took me quite some time.Thank you again.
@Mycroft616 Жыл бұрын
And then there is me who used the tan(a + b) identity.
@petermerrick6615 Жыл бұрын
Me too, but only if you have done that level of maths. Btw, he could make the Pythagorean calculations easier by scaling down and then back up, which is especially useful in non-calculator scenarios.
@orobosaisokpunwu6774 Жыл бұрын
I used the tan identity as well and solved for CD directly
@Copernicusfreud Жыл бұрын
Yay! I solved the problem.
@bekaluu1 Жыл бұрын
Used double angle identity for tan to calculate the height of the given triangle. The rest is easy (Pythagoras theorem)
@ybodoN Жыл бұрын
Like two weeks ago, the height (CD) of such a triangle is √(AD² + 2 ⋅ AD ⋅ DB) And here are the new formulas: AC = √(2 ⋅ (AD² + AD ⋅ DB)) and BC = AD + DB
@marioalb9726 Жыл бұрын
tan x = 9 / h h = 9 / tan x tan 2x = h / 12 h = 12 tan 2x Equalling: 9 / tan x = 12 tan 2x tan 2x . tan x = 3/4 Clearing Angle: x : 27,575° h = 9 / tan x h = 17,234 cm a = h / cos x a = 19,44 cm b = 12 / cos 2x b = 21 cm ( Solved √ )
@wackojacko3962 Жыл бұрын
Once again the pendulum or dance of Pythagorean Theorem. 😉
@murdock5537 Жыл бұрын
Nice! DCA = φ; DBC = 2φ; AD = 9; BD = 12; CD = h → tan(2φ) = h/12 → tan(φ) = 9/h → tan(2φ) = 2tan(φ)/(1 - tan^2(φ)) = h/12 = 18h/(h^2 - 81) → h^2 = 297 = 33(9) → h = 3√33 → AC = √(297 + 81) = 3√42 → BC = √(297 + 144) = 21 or: CAB = BCA = 90° - φ → AB = 21 → AD = 9 → BD = 12 → CD = h → AC = b = AE + CE ↔AE = CE = AC/2 → BC = a = 21 → sin(φ) = (b/2)/21= 9/b → b = 3√42...
@quigonkenny11 ай бұрын
As ∠ADC = 90° and ∠DCA = x, ∠CAD = 90°-x. Similarly, as ∠CDB = 90° and ∠DBC = 2x, ∠BCD = 90°-2x. As ∠DCA = x and ∠BCD = 90°-2x, ∠BCA = 90°-2x + x = 90°-x. As ∠BCA and ∠CAB are congruent, ∆ABC is isosceles and AB = BC = 12+9 = 21 ---- (sol 1) Triangle ∆CDB: a² + b² = c² 12² + CD² = 21² CD² = 441 - 144 = 297 CD = √297 = 3√33 ---- (sol 2) Triangle ∆ADC: c² = a² + b² CA² = 9² + (3√33)² = 81 + 297 = 378 CA = √378 = 3√42 ---- (sol 3)
@gelbkehlchen Жыл бұрын
Solution: angle ACB = angle ACD + angle DCB = x+90°-2x = 90°-x angle BAC = angle DAC = 90°-x ⟹ angle ACB = angle BAC = 90°-x ⟹ BC = AB = 9+12 = 21 [because ABC is an isosceles triangle] Pythagoras in triangle DBC: DC = √(BC²-BD²) = √(21²-12²) = √297 = 3*√33 ≈ 17,2337 Pythagoras in triangle ADC: AC = √(AD²+DC²) = √(9²+297) = √378 = 6*√10,5 ≈ 19,4422
@michaelkouzmin281 Жыл бұрын
Hi! by the way to figure out all unknowns x = atan(9/(3*sqrt*33)) = D48.13
@giuseppemalaguti435 Жыл бұрын
Sine rule.. 21/sin(x+(180-90-2x))=AC/sin2x.. con AC=9/sinx...risukta dai calcoli sinx=sqrt(9/42)..successivamente calcolo tutti i lati
@JSSTyger Жыл бұрын
CB=21 and AC = 3sqrt(42)
@AnonimityAssured Жыл бұрын
This is made more manageable with a little trick. Spoiler alert. First, divide the given lengths by three, as they have it as a common factor, then multiply by three at the end.
@muslim19800 Жыл бұрын
🔼 *I like it* 🔼
@mathexpress9171 Жыл бұрын
I solve it by trigonometry
@bigm383 Жыл бұрын
❤🥂😀📐
@PreMath Жыл бұрын
Thanks for your continued love and support! You are awesome. Keep it up 👍 Stay blessed 😀
@marioalb9726 Жыл бұрын
Everytime we have this configuration, with angle x and 2x as figure shows, we have an isosceles triangle, of equal sides 's' = 9+12 = 21 So, side CB = side AB s = 21 cm cos 2x = 12 / 21 x = 27,575° tan 2x = h / 12 h = 17,234 cm tan x = 9 / c c = 17,233 cm ( Solved √ )
@harrymatabal84487 ай бұрын
English is not a precise language. If the side is missing how can I find it length. First I must find the side. Don't you agree😂