Glad you think so! Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@aleksandrsavuskan7124 Жыл бұрын
S=567
@michaelkouzmin281 Жыл бұрын
Triangles AEF and ABC are similiar, so we can either calculate coefficient of proportion (22/8) and multiply 56 times square of this coef or calculate AB and then Area of ABC = AB*CB/2
@jphilsol6459 Жыл бұрын
yes I did the same, I think is faster.
@IslamDarbal Жыл бұрын
Me too
@marioalb9726 Жыл бұрын
Blue square, side 'b' b = √Area = √196 b = 14 cm Yellow right triangle, height "h' Area = ½ b. h = a h = 2 area / b = 2 . 56 / 14 h = 8 cm Height of purple right triangle: H = b + h = 14 + 8 H = 22 cm Areas ratio of similar right triangles R = A/a = (H/h)² R = (22 / 8)² = 2,75² Area purple triangle: A = R. a A = 2,75² . 56 A = 423,5 cm² ( Solved √ )
@ybodoN Жыл бұрын
Generalized: the area of the purple triangle is _(a + 2b)² / (4b)_ where _a_ is the area of the blue square and _b_ is the area of the yellow triangle. The area of the white triangle is _a² / (4b)_ so the area of the purple triangle is _a + b + a² / (4b)_ i.e. the famous identity _(a² + 4ab + 4b²) / (4b)._
@tombufford136 Жыл бұрын
A quick glance at the problem. Height h = sqrt(196)= sqrt(56) .length, L = h/cos(45). h = 21.5 and L =30.4. Purple area = half base x height = 15.2 * 21.5 =326.8. I look forward to watching the video.
@marinacheckina2588 Жыл бұрын
Откуда взялся угол в 45 градусов?.
@tombufford136 Жыл бұрын
Hi Marina , I corrected my original comment soon afterwards. the angle required CAB is 33.7 degrees To solve this without angles , similar triangles are used, Triangles EAF and CAB are similar triangles with the same side ratios. Here is my revised comment from a month ago :-" Correcting more accurately. height =sqrt(196)+ 56/(sqrt(196)*0.5)=14+8=22.Angle at A = ATan(8/14) =33.7 degrees. L=h*14/8=38.5. half base * height =19.25*22=423.5"@@marinacheckina2588
@tombufford136 Жыл бұрын
Привет, Марина, вскоре после этого я исправил свой первоначальный комментарий. требуемый угол CAB составляет 33,7 градуса Чтобы решить эту проблему без углов, используются аналогичные треугольники, Треугольники ДСП и CAB представляют собой аналогичные треугольники с одинаковыми соотношениями сторон. Вот мой исправленный комментарий месячной давности :-" Поправляю точнее. высота =sqrt(196)+ 56/(sqrt(196)*0.5)=14+8=22.Угол в точке A = ATan(8/14) =33.7 градусов. Л=ч*14/8=38,5. половина основания * высота = 19,25 * 22 = 423,5 дюйма @@marinacheckina2588
@advancedintention7169 Жыл бұрын
Thanks sir....
@KAvi_YA666 Жыл бұрын
Thanks for video.Good luck sir!!!!!!!!!
@AmirgabYT21859 ай бұрын
S=423,5 cm²
@bigm383 Жыл бұрын
Nice work!❤🥂
@PreMath Жыл бұрын
Thank you! 😊
@thewolfdoctor761 Жыл бұрын
I calculated area of purple triangle = sum of areas of blue square, yellow triangle, white triangle so, 1/2(22*X) = 196+56+1/2(14*(X-14)) ==> X= 38.5 ==> Purple area = 1/2(38.5*22) = 423.5
@yalchingedikgedik8007 Жыл бұрын
Thanks Sir We enjoyed with like these methods of solve .
@zipponvr7043 Жыл бұрын
You can solve it much simpler, you don't need to calculate any sides 196 / 56 / 2 = 1.75 it is acpect ration EA and EF ( EF = 1.75 x EA ) EFA and FGC are similar, so area of GFC = 196 * 1.75 / 2 = 171.5 that's mean area DAC = ABC = 171.5 + 196 + 56 = 423.5
@HeHe-rp3dq Жыл бұрын
It can be done with trigo. We just need to find tanDAC and then equate for the bigger triangle DAV and then simply apply the formula to get the ans.
@williamwingo4740 Жыл бұрын
Here's a different, and possibly simpler method: DE = √196 = 14 (done by inspection: it has to be between 10 and 15; I tried 14 since 14^2 has to end in a 6--and it worked); EA = (2)(56)/14 = 56/7 = 8; Triangles EAF and GFC are similar by angle-angle-angle; so GC = EF(14)/8 = (14)(14)/8 = 196/8 = 24.5; Area of triangle GFC = (0.5)(24.5)(14) = (24.5)(7) = 171.5; line AC bisects the big rectangle; so the area of the lower purple triangle is equal to the sum of the upper three triangles: 196 + 56 + 171.5 = 423.5. Cheers. 🤠
@sie_khoentjoeng4886 Жыл бұрын
Make a line FG cross to AB at H, then area ractangular AHGD is 196+56+56=308. Since DG=√196=14, then AD=308/14=22=BC , and AE=FH=22-14=8 AHF ~ABC, then AB/BC=AH/HF X/22=14/8 or AB=22*14/8=38.5 Finally area of ABC = 0.5x22x38.5=423.5 unit..
@santiagoarosam430 Жыл бұрын
EF=GF=√196=14 → EA=2*56/14=8 → s=14/8=7/4 =Razón de semejanza entre ∆FGC y ∆AEF → Área ∆FGC=56s²=171.50 cm² → ∆ADC=∆ABC → Área púrpura =196+56+171.50 =423.50 cm² Gracias y saludos.
@SaadmaanMahmidShoshi Жыл бұрын
Solved it in a bit of a lengthy way - calculated one side length of the rectangle which was 22, then calculated area of the white triangle at the right, which came as 7a-98 (assuming the other side of the rectangle as a). Then, the area of the bigger triangle became 0.5× a × b = 0.5 × a × 22 = 11a. Now, summing the areas of the blue square, the yellow rectangle and the white triangle, we get the total area = 154 + 7a, which is equal the area of the big triangle. From there we get a = 38.5. Now we can simply plug in the values of a and thus we get area of bigger triangle = 11a = 11 × 38.5 = 423.5. That is indeed the area of the purple triangle, as the diagonal of a rectangle bisects it into two identical triangles of same area. 😊
@jimlocke9320 Жыл бұрын
Triangle ΔAEF and ΔABC are similar by angle-angle (
@wackojacko3962 Жыл бұрын
@ 0:55 , Gotta love those Action plans: because we as mathematicians need a definitive checklist of tasks and resources too achieve a goal...and in this case the area of the Purple Triangle. If you watch the video till the end you'll find 2 Action Plans ....and we know math is tricky and that there's mo ways to skin a cat! AI uses optimization algorithms to minimize and maximize too get better results. In this case the results are the same. I think the result using the Area of a Quadrilateral is better. 🙂
@PreMath Жыл бұрын
Great! Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@quigonkenny9 ай бұрын
Let s be a side of the blue square, h be the height of the yellow triangle, and b be the base of the purple triangle. Blue square DEFG: A = s² 196 = s² s = √196 = 14 Yellow triangle ∆AEF: A = bh/2 56 = 14h/2 = 7h h = 56/7 = 8 As ABCD is a rectangle, with right angles at every corner, by Complementary Angles ∆AEF and ∆CBA are similar. AB/FE = CB/AE b/s = (s+h)/h b/14 = (14+8)/8) = 22/8 = 11/4 b = 14(11/4) = 77/2 Purple triangle ∆CBA: A = bh/2 = (77/2)(14+8)/2 = (77/2)22/2 A = 11(77/2) = 847/2 = 423.5 cm²
@murdock55376 ай бұрын
∎ABCD → AB = AH + HB = 14 + (x - 14) = CD = DG + CG = 14 + (x - 14) AD = AE + DE = (y - 14) + 14 = BC = BK + CK = (y - 14) +14 area ∎DEFG = area ∎BKFH = 196 → DE = EF = 14; area ∆ AFE = area ∆ AHF = 56 14y = 308 → y = 22 → y - 14 = 8 → 8(x - 14) = 196 → x = 77/2 → area ∆ ABC = xy/2 = (7/2)11^2
@nhlalonhleduma8034 Жыл бұрын
Do we use that formular on any triangle
@tombufford136 Жыл бұрын
Correcting my previous answer. Height h=sqrt(196)+sqrt(2*56). Length L = h/cos(45). h=24.6, L=34.8. half base * height = 17.4 * 24.6 = 427.6.
@MrPaulc222 Жыл бұрын
I went for the portion of the purple triangle on the left and wrote 8/14 = 22/x which gave x as 38.5. Therefore, area of purple triangle is (22*38.5)/2 so 11*38.5 sq cm.
Yay! I solved the problem. Although the yellow and purple triangles are inverted in the diagram, the yellow triangle is also similar to the purple triangle.
@じーちゃんねる-v4n Жыл бұрын
EF=14 EA=8 ∠EFA=∠CAB=θ then tanθ=8/14=4/7 BC=22 AB=22/tanθ=77/2 ∴S=11(77/2)=847/2
@kennethstevenson976 Жыл бұрын
Got the answer on the first try, step by step with diagram.
@e1woqf Жыл бұрын
The triangles AEF and ABC are similar. We just need to find the scaling factor, which is 22/8.
@GorkiCiprian74 Жыл бұрын
Also purple trianle is congruent to yellow one.
@AndreBaguette Жыл бұрын
I used ratios
@alster724 Жыл бұрын
Easy even without the trapezoid
@tombufford136 Жыл бұрын
Looking more carefully, I have made the mistake of calculating the 56 unit area as a rectangle not a Triangle , making my answer inaccurate.
Blue square, side 'b' b = √Area = √196 b = 14 cm Yellow right triangle, height "h' Area = ½ b. h h = 2 A / b = 2 . 56 / 14 h = 8 cm Height of purple right triangle: H = b + h = 14 + 8 H = 22 cm Similarity or triangles: B/ H = b / h B = b. H/h B = 14 . 22 /8 B = 38,5 cm Area purple triangle: A = ½ B.H A = ½ 38,5 .22 A = 423,5 cm² ( Solved √ )
@danieldennis9831 Жыл бұрын
⇒A of △ABC=423.5 cm² □DEFG has A 196cm² which is 14². Each side is 14 cm. |DE=14 |EF=14 △AFE has A 56cm². A of △=½bh. |AE=x 56=½(14)x. 112=14x. x=8 |AE=8. |AD=|AE+|ED=8+14=22. I could but will not include all steps to prove △AEF△FGC△ACD are all similar and therefor have congruent angles. tan∠EAF=tan∠DAC. |DC=y 14/8=y/22 y=38.5 With △ADC having base 38.5 and height 22, A=423.5 △ADC is mirror of △ABC and is therefore △ADC≅△ABC. A of △ABC=423.5cm²
@misterenter-iz7rz Жыл бұрын
not difficult, by first impression. AE=2x56/14=8, GC=14x(14/8)=49/2, therefore the answer is (1/2)(14+49/2)(14+8)=11(28+49)/2=11x77/2=423.5.😊
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@gelbkehlchen Жыл бұрын
Solution: DE = EF = side of the blue square = √(196[cm²]) = 14[cm] AE*14[cm]/2 = 56[cm²] |*2/14[cm] ⟹ AE = 56[cm²]*2/14[cm] = 8[cm] ⟹ BC = AD = AE+DE = 8[cm]+14[cm] = 22[cm] ⟹ Similarity: AB/BC = EF/AE ⟹ AB/22[cm] = 14[cm]/8[cm] |*22[cm] ⟹ AB = 14[cm]/8[cm]*22[cm] = 38,5[cm] ⟹ Area of the Purple Triangle = AB*BC/2 = 38,5[cm]*22[cm]/2 = 423,5[cm²]
@aka_vitfil Жыл бұрын
solved! 52 seconds...
@JSSTyger Жыл бұрын
Lets see if I got it right. I tried it all in my head and got 423.5.
@JSSTyger Жыл бұрын
Side length AD=14+8. I then used rise over run (8/14) of the diagonal to get DC
@Teamstudy4595 Жыл бұрын
1st view
@PreMath Жыл бұрын
Well done, dear Thank you! Cheers! 😀 You are awesome. Keep it up 👍