Open the Black Box: an Introduction to Model Interpretability with LIME and SHAP - Kevin Lemagnen

  Рет қаралды 39,781

PyData

PyData

Күн бұрын

Пікірлер: 3
@maheshmm2
@maheshmm2 2 жыл бұрын
3:33 : github and colab links to code 5:20 : why is it important? Data bias 12:42: Explain like i'm 5 14:19 : Introduction to Interoperability (Jupyter code) 15:38 : sklearn.compose import column.transformer 20:55 : train, test 21.41: white box models, logistic regression 30:00: probability , score explained. 35.27 : Decision tree 36.28 : LIME 45:17 : LIME API 46:00: Random Forest 60:23 : SHAP 64:05 : SHAP API 75:31 : no tabular data 83:00 : Conclusion
@narotian
@narotian 3 жыл бұрын
I appreciate that well explained.
@bryanparis7779
@bryanparis7779 2 жыл бұрын
55:58 According to LIME, do these blue contributions of features really sum up to the probability of 0.71, if we show all contributions? Similarly, the orange ones are we sure that sum up to 0.29? I have examples of making me confused about this....
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
MIT Introduction to Deep Learning | 6.S191
1:09:58
Alexander Amini
Рет қаралды 895 М.
Visualizing transformers and attention | Talk for TNG Big Tech Day '24
57:45
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,7 МЛН
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 452 М.