It is amazing that we are getting this knowledge for free!
@Jonathan-ru9zl3 ай бұрын
It'll be more amazing when we'll have our private ai teacher in the near future
@jeremycornish-ford24352 жыл бұрын
"Do not forsake wisdom, and she will protect you; love her, and she will watch over you. Wisdom is supreme; therefore get wisdom. Though it cost all you have, get understanding." - Proverbs 4:6-7. Thank you Stanford.
@trailersforme22 күн бұрын
Participating in Stanford classes for free! Thank you so much.
@blob44925 ай бұрын
I'm trying to get into a university for ai engineering and this course is just what I needed!
@oanhhoang70474 ай бұрын
Hey I haven't watch this course yet, does it required prior knowledge of CS or coding?
@blob44924 ай бұрын
@@oanhhoang7047 its good (and recommended) to know some coding, but you can get through without having prior cs knowledge
@AmazingGirl8964 ай бұрын
@@oanhhoang7047not really
@aerodynamico64272 жыл бұрын
The real course begins at 4:52, with the origins of AI.
@BeeAnnoying Жыл бұрын
I finished first class today!
@GoroniG Жыл бұрын
seeing this in 2023 is quite intresting. yay baby
@aimennadeem72432 жыл бұрын
Lecture begins at 2:45
@swavekbu4959 Жыл бұрын
Excellent teacher! Enjoyable to listen to.
@kannonpayne26147 ай бұрын
Ikr I’d be a Harvard graduate if all my teachers taught like him.
@miguelcalvache7062 жыл бұрын
Thanks a lot indeed for sharing all this knowledge!
@mallelachandrabharathkumarredd Жыл бұрын
learning all video this can we become Artificial intelliger
@WolfRex42 жыл бұрын
This is amazing thank you!!! So refreshing and so unique.
@JonB-tv8vs Жыл бұрын
Interesting. Lost of concern about bias, but then the root vulnerability of bias is found in modeling. If you want a specific outcome (a bias on equity versus equality, for example), model it and everything will be based on that. GIGO.
@do-awr10682 жыл бұрын
its actually hard for a beginner but its amazing
@alexchen1300 Жыл бұрын
agreed man, took me a few hours to get these codes straight
@almirtavares170313 күн бұрын
tks for share... I loved theses class and the didatic teachers
@tlzg9 ай бұрын
Wow, this is gold!!!❤
@rafael_Reis_rv10 ай бұрын
Rewarding Content!!
@connerwhite5351 Жыл бұрын
Glad this is difficult to learn. Means there will be few that get into it. Which means more 💲💵. At least for a decent period of time
@Jonathan-ru9zl3 ай бұрын
Excellent lecturer
@phosphoricx7 ай бұрын
Writing the code for a demo live in class is bawler.
@calvin_713 Жыл бұрын
24:48 I thought the dead silence after professors giving a question won't happen in stanford courses 🤣
@lindacarlen62509 ай бұрын
Thank you!
@lindailiana98585 ай бұрын
What are the two views?
@mohmedosamahegab31915 ай бұрын
How I can get these lecturers 😢
@vamsikrishna_128911 ай бұрын
In which platform does the code get executed
@PriyanshuJha-t7b11 ай бұрын
Can't we just find the max lenght of the two strings,in this case the max length will be of string 2 which is "The Cats" then use the LCS Algo using the DP(recursion) which returns the longest common subsequence and then substract it from the max length of the string. Can we approach this way someone please look into this!
@PriyanshuJha-t7b11 ай бұрын
I think doing this by LCS would be easy,First we find the max length of the two strings: int max(str1,str2){ s1=sizeof(str1); s2=sizeof(str2); if(s1>s2){ max=s1; } else{ max=s2; } return(max); } int LCS(m,n){ if(m==0) return(n); if(n==0) return(m); else{ if(s[m]==t[n]) return(1+LCS(m-1,n-1)); else a=min(LCS(m-1,n),LCS(m,n-1)); return(a); } } Finally return(max-LCS(m,n)) This way we can find out the minimum edit distance between the two strings. NOTE -> We have not consirdered the space while calculating the max! Please do correct if I am wrong anyone??
@UsamaKhan-oj2nn7 ай бұрын
Sir where I get school emails for piazza plate form
@dyllanndaniel4118 Жыл бұрын
Woah! This is so interesting
@x10creeper523 ай бұрын
My timestamp 01:06:20
@mehdibahmani37912 жыл бұрын
dorsa ❤
@adhamadel89372 жыл бұрын
Amazing
@monkmode9138 Жыл бұрын
I didn't understand how the cache works. Can someone explain please? 1:14:47
@monkmode9138 Жыл бұрын
We use cache after we do all computing ( after "result = min(subCost, delCost, insCost)" ) so how does it benefit to us?
@JessicaAnhDao Жыл бұрын
You check the cache FIRST before running all the computation "if (m,n) in cache => return cache(m,n)" lines at the top before everything else. So basically if the result is already in the cache then there is no need to run 3 computations again, just return the result
@alpeaceandlove Жыл бұрын
yo thanks man for ya knowledge
@ExploreEight Жыл бұрын
little difficult
@tylarrj Жыл бұрын
30:00
@dakshinamurthy8066 Жыл бұрын
Its hard to understand the lecture, any suggestions
@monkmode9138 Жыл бұрын
Do you know Python? Maybe it's hard because you don't know python syntax.
@dakshinamurthy8066 Жыл бұрын
@@monkmode9138 okay..👍
@shoaibyehya3600 Жыл бұрын
Thank you
@ameendababat9886 Жыл бұрын
23:32
@jameshopkins354110 ай бұрын
UFF INSOPORTABLE PALABRERIA
@jameshopkins354110 ай бұрын
UFF NO OKEY. SO DISGUSTING BLA BLA BLAAAAAA
@kartiksharma75898 ай бұрын
Such an amazing session. But i cant understand as to why eta is used in generating new value of w that too without conditions. Can someone clear this up. Would be much help
@rolandduplessis51327 ай бұрын
That was a bit quick right. 😅 If my math serves me right, eta is the value by which you jump after each iteration. Almost the same as the learning rate in which is in alot of ai stuff. I'm probably butchering the explanation. But all you need to know is that it is a parameter you play around with in these types of models and the lower it is the longer it takes for the model to reach the minimum and vice versa
@amittiwariat6 ай бұрын
Here the problem is relatively simpler i mean the graph is simple. There is just one minimum. In case where we have functions where there are more than 1 minimum, the slope is flat or there is a narrow pit in a graph, it becomes essential that we control the step size by which we decrease the gradient after each iteration otherwise we might miss the minimum. If we decrease the starting point everytime with a larger value we are decending down the graph too fast and at some point it will skip the minimum point and would never converge. Also if there at any point in graph a plateau then a very small step size would believe that to be minimum as it would never be able to cross it in such small iterations. So we play around with this value to get desired result and to reduce the error in order to have better predictions.
@OkarinHououinKyouma28 күн бұрын
@@rolandduplessis5132you mean the step size
@chassan Жыл бұрын
WHY DON'T YOU. EXPLAIN HOW THE WORD "ALGORITHM" COME FROM? IT'S THE SOUL OF AI!
@yannickwessidjam2036 Жыл бұрын
😂😂 I am glad we have people like you in the world.