Oxford Linear Algebra: Spectral Theorem Proof

  Рет қаралды 38,763

Tom Rocks Maths

Tom Rocks Maths

Күн бұрын

Пікірлер: 39
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
Check out ProPrep with a 30-day free trial to see how it can help you to improve your performance in STEM-based subjects: www.proprep.uk/info/TOM-Crawford
@wescraven2606
@wescraven2606 2 жыл бұрын
I just realized I had Linear Algebra 17 years ago. In 3 more years, it will be the median of my life. I'm starting to feel old.
@fordtimelord8673
@fordtimelord8673 2 жыл бұрын
I subscribed to your channel a couple months ago, but have not watched a single video. This video showed up on my home page. This is the best presentation and proof of the spectral theorem I have seen. Beautiful logic and clarity of thought. Thank you.
@khbye2411
@khbye2411 2 жыл бұрын
Very clear explanation! Would it be possible to have a video explaining the proof for Cochran's theorem? Thank you!
@ranpancake
@ranpancake 2 жыл бұрын
love how clear your explanations are, proprep seems super worth getting too 😋
@homejonny9326
@homejonny9326 2 жыл бұрын
that theorem blew my mind when i was in college...
@alejandrogarcia-wg2kp
@alejandrogarcia-wg2kp 2 жыл бұрын
Literaly just started doing this 5m ago. Thank you
@xAndr3Bx
@xAndr3Bx 2 жыл бұрын
Thank you, that was really interesting. I've come bake to my course of linear algebra at first year of university :')
@jacksonwilloughby7625
@jacksonwilloughby7625 2 жыл бұрын
I just went over this before thanksgiving, thank you for the clarification of this.
@eamon_concannon
@eamon_concannon 3 ай бұрын
I guess the base case for induction here is where A = [a], a 1X1 (automatically symmetric) matrix with single entry any real number a. Then R = [1] with R^-1 = R^T = [1], so that R^TAR = [1] [a] [1]= [a] (which is diagonal as all 1X1 matrices are diagonal).
@ThePiMan0903
@ThePiMan0903 2 жыл бұрын
Nice video sir Tom!
@nestordavidparedeschoque9895
@nestordavidparedeschoque9895 2 жыл бұрын
This is extraordinary
@alovyaachowdhury1687
@alovyaachowdhury1687 Жыл бұрын
In case anyone wants to know why the first statement of part (II) is equivalent to saying there is an orthogonal matrix R such that R-1AR is diagonal, the intuition can be found from 3b1b's video about eigenvectors starting from here: kzbin.info/www/bejne/hnenpmyli6Z4Y8k Thanks a lot for this really clear proof Tom - there's loads of examples online but thanks for actually walking us through it :)
@thriving_gamer
@thriving_gamer 2 жыл бұрын
Thanks 🙏🏻 Thanks a lot for this informative and useful video ❤️
@iamtraditi4075
@iamtraditi4075 2 жыл бұрын
Gorgeous; thank you :)
@arekkrolak6320
@arekkrolak6320 2 жыл бұрын
nice, but what kind of symmetry does the matrix have? Symmetry of rotation? Center of symmetry? Axis of symmetry? Any of the above?
@MrAlRats
@MrAlRats 2 жыл бұрын
A matrix is said to be symmetric if it's equal to its transpose.
@GabrieleScopel
@GabrieleScopel Жыл бұрын
Just one question, how do se prove that A actually has any eigenvalue? Does it come directly from its simmetry?
@ChrisOffner
@ChrisOffner Жыл бұрын
Do I understand correctly that _v'_ is the component-wise conjugate, i.e. _v = (a + bi, c + di) => v' = (a - bi, c - di)?_ If so, is the inner product of v with its conjugate v', i.e. _v^T * v',_ really equal to the inner product of v with itself, i.e. _v^T * v,_ as shown at ~10:55?
@abuzarmahmood96
@abuzarmahmood96 16 күн бұрын
@TomRocksMaths we assumed that as the matrices are symmetric therefore we will get exactly n mutually orthogonal eigenvectors which we will make mutually orthonormal eigenvectors and continue with your proof, but why is it so that the assumption will be always true
@student5544
@student5544 7 ай бұрын
Lot's of thanks from India sir 😅
@oraz.
@oraz. 2 жыл бұрын
He's got good chalk writing
@Shaan_Suri
@Shaan_Suri 6 ай бұрын
What exactly is "v bar"? Is it the 'conjugate' of vector v? I'm confused
@La_Maudite
@La_Maudite 2 жыл бұрын
Isn't the proof by induction a bit of overkill her? ;-) Just considering e_i instead of e_1 and deducing that A_{i,i} = 1, and A_{i,j} = 0 for i e j does the trick, no?
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
We only know that v1 is an eigenvector. So the other columns don’t necessarily reduce to be diagonal.
@La_Maudite
@La_Maudite 2 жыл бұрын
@@TomRocksMaths Ha, forgot about that fact. Thanks!
@reunguju7501
@reunguju7501 Жыл бұрын
謝謝!
@motherflerkentannhauser8152
@motherflerkentannhauser8152 2 жыл бұрын
What does II of the thm. say if R was changed to C or some other field? Is the proof any different if it was done on linear maps between arbitrary inner-product spaces instead of Euclidean spaces? What does the thm. say if the dimension was infinite?
@amritlohia8240
@amritlohia8240 2 жыл бұрын
The theorem also works over C, but you need to change from symmetric matrices to Hermitian matrices (i.e. matrices that equal their *conjugate* transpose). The proof works in the same way for arbitrary inner product spaces. If the dimension is infinite, one essentially gets into functional analysis and there are various spectral theorems - e.g. the same statement as the basic spectral theorem holds for compact self-adjoint operators on a (real or complex) Hilbert space. Generalising beyond that, in order for the statement to remain true, you also have to generalise your notion of eigenvectors, and this rapidly gets rather complicated.
@Watermelon1.0
@Watermelon1.0 2 жыл бұрын
Hi Tommy 😁
@admink8662
@admink8662 2 жыл бұрын
Nice
@daydreamer05
@daydreamer05 2 жыл бұрын
You are an example of "don't judge a book by it's cover."
@lucasm.b.4390
@lucasm.b.4390 2 жыл бұрын
You haven’t shown there is at least one real eigenvalue for A.
@lucasm.b.4390
@lucasm.b.4390 2 жыл бұрын
It should follow easily from the fundamental theorem of algebra. Great video nonetheless.
@pieTone
@pieTone 2 жыл бұрын
This is cool and all but never forget that this is the same guy who forgot his circle theorems :) Jk man you are awesome!
@chriscox5352
@chriscox5352 2 жыл бұрын
💐 ᵖʳᵒᵐᵒˢᵐ
@krishanu-d1k
@krishanu-d1k 2 жыл бұрын
Uh easy
@prajananandaraj5847
@prajananandaraj5847 2 жыл бұрын
He doesn't even look like a mathematician, cuz when I saw him the first time, I thought he was some kind of musician
Oxford Linear Algebra: What is a Vector Space?
29:53
Tom Rocks Maths
Рет қаралды 25 М.
Oxford Linear Algebra: Eigenvalues and Eigenvectors Explained
26:23
Tom Rocks Maths
Рет қаралды 39 М.
Players push long pins through a cardboard box attempting to pop the balloon!
00:31
Can You Find Hulk's True Love? Real vs Fake Girlfriend Challenge | Roblox 3D
00:24
УДИВИЛ ВСЕХ СВОИМ УХОДОМ!😳 #shorts
00:49
HARD_MMA
Рет қаралды 2,6 МЛН
Players vs Pitch 🤯
00:26
LE FOOT EN VIDÉO
Рет қаралды 137 МЛН
The deeper meaning of matrix transpose
25:41
Mathemaniac
Рет қаралды 390 М.
25. Symmetric Matrices and Positive Definiteness
43:52
MIT OpenCourseWare
Рет қаралды 131 М.
Gram-Schmidt Orthogonalization (Proof and Example) | Linear Algebra
15:21
Oxford Linear Algebra: Linear Transformations Explained
32:58
Tom Rocks Maths
Рет қаралды 18 М.
Bayes theorem, the geometry of changing beliefs
15:11
3Blue1Brown
Рет қаралды 4,5 МЛН
ChatGPT can't do math...
41:42
Tom Rocks Maths
Рет қаралды 71 М.
What is Jacobian? | The right way of thinking derivatives and integrals
27:14
The Big Picture of Linear Algebra
15:57
MIT OpenCourseWare
Рет қаралды 984 М.
Players push long pins through a cardboard box attempting to pop the balloon!
00:31