It was great up until "renormalize," which is tossed out without explanation.
@hamade79972 жыл бұрын
Clear, consise, to the point. Tutorial still holds up 9 years later.
@Lumcoin4 ай бұрын
*12 years 😂
@shameelfaraz4 жыл бұрын
Landed on this after bumping head first on many books, articles and videos. This helped, so thanks.
@ifyonye68424 жыл бұрын
You nailed it. Please explain renormalize in details.
@PieterAbbeel12 жыл бұрын
Thanks! One way to do it is as a search problem. Goal states are states where all variables have been put into the ordering. The state is the variables eliminated thus far. An action is the choice of next variable to eliminate. The cost could be, for example, the size of the factor generated during the elimination, or (a little more intricate) the max(0, size of factor generated - largest factor generated thus far). A uniform cost (or A*) search would allow you find the optimal ordering.
@aaronk82974 жыл бұрын
Does ordering of elimination matter? If not, then how did you think of the order?
@BeSharpInCSharp4 жыл бұрын
Video is great but I don't know how to renormalize and I am crying now.
@amarimuthu4 жыл бұрын
Many thanks and it really helps :). When you say Re normalize to find for eg. P(U|+z), this implies P(+z,U)/P(+z). Is that right?
@PieterAbbeel11 жыл бұрын
For a query of the type P(Q_1, Q_2, ..., Q_m | e_1, e_2, ..., e_n) we call the Q_i variables the query variables, the e_i variables the evidence variables, and the remaining variables in the Bayes' net are the hidden variables. Variable elimination proceeds by eliminating one hidden variable at a time. When all hidden variables have been consumed, then all the remaining factors need to be multiplied together to obtain P(Q_1, Q_2, ..., Q_m, e_1, e_2, ..., e_n).
@nicolasplano20554 жыл бұрын
UNITO: project IaLab, leave a like.
@francescodisario42964 жыл бұрын
Eroe
@kalyanikadiyala34267 жыл бұрын
Could you please explain how to "renormalise" with an example? Thanks in advance
@backwardsman17 жыл бұрын
The "renormalise" part just means that you would normalize the final answer over the query variable. So, we know that P(U|+z) = α P(U, +z) from the start. That alpha (α) is the normalization factor. It is used to make the resulting probability sum to 1 when considering its inverse. (P(u|+z) and P(!u|+z) should sum to 1 as a probability) After you finished all the variable elimination you still must normalize your result. You do this by dividing by the sum of your resulting equation with U as both u and !u (true and false) So, you get: P(U | +z) = (P(U)f4(+z,U))/(Σu P(u)f4(+z,u)) (That Σu is meant to represent summing over all U values)
@jianwenliu4586 жыл бұрын
@@backwardsman1 Thank you!
@BeSharpInCSharp4 жыл бұрын
@@backwardsman1 Thanks you
@rupertpupkin4349 Жыл бұрын
@@backwardsman1 what if query was P(!U | +z), we still sum over all U values?
@poojakrishna86237 жыл бұрын
How to choose the elimination ordering ??
@Kenny-hm1jb7 жыл бұрын
I think the elimination ordering include variables that are not in the query.
@Kenny-hm1jb7 жыл бұрын
*includes
@backwardsman17 жыл бұрын
You should choose the ordering based on the size of the factor that it will create as to avoid raising the complexity. For example, he first chose W to eliminate. This resulted in a factor that required two variables as arguments (Y and V). The size of this factor is 4, assuming a binary domain. 4 also becomes the largest sized factor that he created. However, if he were to first choose V, he would have had a resulting factor: f1(X,Y|U,W) = Σv P(v)P(X|U,v)P(Y|v,W) This results in a factor that takes four variables! In a binary domain that's a factor size of 16 (2^4). If you think about it in terms of a tree, it will make much more sense, and this is essentially how variable elimination works. It works its way down the tree, multiplying and summing factors and taking variables as arguments. If a factor is created with four variables, it must branch out four times! Meaning it has to compute f1 when X is true and false, when Y is true and false, when U is true and false, and when W is true and false. So, for this reason, you want it to branch as little as possible.
@rupertpupkin4349 Жыл бұрын
what if query was P(!U | +z)?
@AshutoshSahuMRM Жыл бұрын
good even after 11 years
@tuytoosh6 жыл бұрын
thank you for your great tutorial
@backwardsman17 жыл бұрын
When you join the factors you aren't supposed to get a joint probability every time. For example, when you eliminated W, you should have gotten the factor as: f1(Y|V) = Σw P(w)P(Y|V,w) The resulting factor from a join of two factors contains any variables that came before a conditional in any of the joined factors in front of the conditional. Otherwise, they go behind the resulting conditional (as conditions). I thought I should mention this, because the way variable elimination is being done here is not entirely correct.