*Hot damn, I love that Constant! Check out the new STEMweek deals btw! 10% off the WHOLE Brand New Nonlinear Dynamics & Chaos Collection! :0* stemerch.com/collections/nonlinear-dynamics-chaos Also, if you're still looking for the perfect Christmas present make sure to try out Brilliant! brilliant.org/FlammableMaths
@neurophilosophers9944 жыл бұрын
There is a list of fractal’s of increasing Haussdorff dimension on Wikipedia. But why is there no procedural way to generate fractal shapes of every dimension across the continuum ? In the same way Conway generates all 0 to 1 dimensional numbers with Surreal Numbers ? Is there a possible connection ?
@wansichen37434 жыл бұрын
you should try compute this in log space like a normal person does
@wansichen37434 жыл бұрын
you can also define long double instead of just double in python to avoid the issue you have there
@KillianDefaoite4 жыл бұрын
16:48 "We need math.sqrt" **(1/2): am I a joke to you?
@frozenmoon9984 жыл бұрын
Andrew from the basement: *your floor function is too loud, I can't sleep*
@daveconerly14503 жыл бұрын
Now this is the old flammy that is so entertaining. Even though ive watched you for years , and I've never received a response except for the infamous WTF I am one of your biggest fans. You motivate me to see life in a whole different light. " A stroke of genius " put me on my death bed.
@PapaFlammy693 жыл бұрын
@tomkerruish29824 жыл бұрын
The infinite product (1-t)(1-t^2)(1-t^3)••• shows up when dealing with the partition function. Mathologer recently made a video about this. Euler showed that the product resolves to 1-t-t^2+t^5+t^7-••• with the nonvanishing teen's3 having exponents that are pentagonal numbers. This should aid in the calculation of the Fibonorial constant.
@hauntedmasc4 жыл бұрын
your python skills are improving papa! a nice trick you can abuse in python for "swap"-type functionality is the following: -- code -- a, b = 1, 1 for iterate in range(3, n): a, b = b, a + b -- /code -- simultaneous assignment abuse!
@PapaFlammy694 жыл бұрын
great stuff, I'll use that next time! =)
@PapaFlammy694 жыл бұрын
great stuff, I'll use that next time! =)
@michaeljones16864 жыл бұрын
python ez
@Ricocossa14 жыл бұрын
Here's another cosmetic change you can do: instead of having your first and second fibonacci floating around in the global scope, you could make your fib function a generator function. Simply replace "return" by "yield" and your function will remember the values of its variables between calls. :) Edit: I wrote this before realizing you were going for a for loop and not a function. But it's still useful stuff to know.
@martinepstein98264 жыл бұрын
"57isprime" Nice.
@PapaFlammy694 жыл бұрын
Finally someone noticed XD Good catch Martin! :D
@chonpincher4 жыл бұрын
Yes, it's the famous Grothendieck prime.
@steve28173 жыл бұрын
Python blows up when number is greater than 1.79e+308, greater numbers are defined as 'inf'
@calculusphysicschemaccountingt4 жыл бұрын
BTW, you need to sleep more and maintain your health because I saw your black circle under your eyes.
@PapaFlammy694 жыл бұрын
I'm still ill^^
@ComBOT4 жыл бұрын
@@PapaFlammy69 don't lie, you're trying to prove twin prime We know
@erencan14534 жыл бұрын
@@PapaFlammy69 Good Besserung!
@longphung48744 жыл бұрын
@@PapaFlammy69 Papa I know you’re trying to prove Navier Stokes
@Kdd1604 жыл бұрын
@@PapaFlammy69 get well soon 😀
@youtuberdisguiser60754 жыл бұрын
Guys i just want to remind you to upvote and comment on his videos, so that the algorithm treats his videos better. ^^
Python is kind of similar to C++ C and Pascal programming language, I was able to follow this even though I never studied python
@TobyAsE1204 жыл бұрын
python is pseudo code that actually runs
@Nothingtonnobodson2 жыл бұрын
@@TobyAsE120 I use to use java, trying to shift to python
@HAL-oj4jb4 жыл бұрын
Some guy probably: Asks you for your QnA on Sunday what your favourite constant is Papa Flammy: Makes a whole video about it
@ivanoliveira97844 жыл бұрын
0:32 I was expecting him to say "Hello Kitty Cats", but he didn't ;-;.
@debblez4 жыл бұрын
“57 is prime” STOP 😭
@maciejsiedlecki84734 жыл бұрын
Great video as always! You may actually want to look for some "arbitrary precision calculations". For example - python "decimal" library. It will give you way better result (literally - waaay more digits after the comma). Looking forward for more PyMath videos :)
@MrRyanroberson14 жыл бұрын
fun fact: it converges so fast that prod(38) already gives you the highest precision result that default floats can compute.
@MrRyanroberson14 жыл бұрын
actually: if you plot it in desmos, it's even more incredible! instead of -1/phi^2, try the product from 1 to 100 of (1-x^n), it produces such an interesting curve. the fibonorial constant is the special output for x=-1/phi^2; the function converges to finite values for |x|
@smrtfasizmu61614 жыл бұрын
You could have also initialized fib = 1, s = 1 and then in the loop put p*= fib, f =s, s = fib before fib = s + f Then the loop runs from 2 instead of 3, because the product p that you get in first iteration is 1*1 which is the first Fibonacci number multiplied by the second one
@luchisevera18084 жыл бұрын
An infinite product of immortal rabbits getting it on
@beardedboulderer26094 жыл бұрын
I didn't know drinking water while watching Papa Flammy could be so dangerous until I saw the intro meme... Love it!
@sicko_the_ew4 жыл бұрын
You could try out this (f,s) = (s, fib). If it doesn't work, that's too bad, but you might as well try it. It might be necessary to start out with a tuple, (f, s) instead of individual variables. (You could also try f,s = s,fib , without the parentheses, but that might be confusing to begin with). The aim is this: (var0, var1, var2 .., varN) = (eval0, eval1, .. evalN) - which you've probably encountered before. Nice for swapping values. Just write a, b = b, a
@The1RandomFool4 жыл бұрын
SageMath can handle very large numbers, and custom functions for it are programmed in Python as well. With the built-in functions the Fibonacci factorial can be expressed as prod(fibonacci_sequence(1,50)), which multiplies the Fibonacci numbers in a certain range. The C constant can be computed to 100 digits with product(1-(-1)^k/golden_ratio^(2*k),k,1,300).n(digits=100). Interestingly, the Fibonacci factorial constant was already put on the Online Encyclopedia of Integer Sequences in 2001.
@hbowman1083 жыл бұрын
In conventional factorials, the product of the first zero integers isn't zero, it's one.
@rogergarridovilallave93419 ай бұрын
The fibonorial constant is the value of the Q-pochhamer symbol with z=1, q=-phi^{-2}, i.e. it is (1; -phi^{-2})_infty
@zorrozalai4 жыл бұрын
Fun fact: if you draw a Pascal's triangle, pick up a point on it's side and you start to jump like a chess knight, then the sum of the visited numbers will always be a fibonacci number. Going downward: 1+3+1 = 5, 1+6+5+1=13, 1+10+15+7+1=34. Going upward: 1+2=3, 1+4+3 =8 ...
@Demki4 жыл бұрын
Up next: gnuctorial - where you take the product of the number of groups of order k (or as Conway called it, gnu(k)) for k between 1 and n and the trivial gnuctorial - where you take the product gnu(k) for k between 0 and n the second one is trivial because there are 0 groups of order 0...
@roberthrusecky94394 жыл бұрын
I thought it was when you compile successive versions of the GNU compiler toolchain with the previous one
@hotlinkster1234 жыл бұрын
It would have been a nice exercise to plot the convergence of both methods in python.
@duncanw99014 жыл бұрын
I think non-computable numbers might be less well known :D I did like phi=2 engineer++ method there at 8:48 and a quick python tip: in 3.x you can use the "double asterisk" operator for exponentiation, so you don't have to import math.sqrt() or math.pow() but just use 5 ** 0.5 (edit: you did this for the other part I look dumb now)
@unknownpalooza84754 жыл бұрын
Sometimes, mathematics can be very mysterious also... Oh boi, this gets pretty intense...
@georgecantu8564 жыл бұрын
bruh I just started learning python, you are a psychic dude
@dominikstepien20004 жыл бұрын
0:31 I was expecting papa saying 'including those very neat, cute kitties'
@a_llama4 жыл бұрын
liking for the algorithm!
@BlackHermit4 жыл бұрын
Fibonacci was not insane! He was an Italian mathematician from the Republic of Pisa, which is the mark of sanity! Fibonacci was a guest of Emperor Frederick II, who enjoyed mathematics and science. I love him so much... Dear Fibonacci Your series is great Dear Fibonacci Please open the gate!
@VaradMahashabde4 жыл бұрын
13:45 Nah your brain was thinking ten steps ahead and took the log already
@garvett66604 жыл бұрын
*wipes tears off *it’s beautiful...*
@arkitson4 жыл бұрын
The Fibonacci factorial constant can be expressed in terms of the derivative of the Jocobi theta function of the first kind. See: arXiv:math/0608187
@everettknag72434 жыл бұрын
Great video!
@jarogniewborkowski52844 жыл бұрын
Hmm... Double chaotic pendulum. What do You think about 3 body problem? Is there also chaos or not? I have heard about Sundman, who probably has already solved this "chaos". Maybe You could make some video about it. Best regards
@Kdd1604 жыл бұрын
Papa you are soo creative 😄😄
@Ryan-gq2ji2 жыл бұрын
would there be a way to extend the Fibonorial to all real numbers greater than zero?
@nullinf4 жыл бұрын
How’d you get the slidey-chalkboard in your room :0
@Tomaplen4 жыл бұрын
Factoriacci
@johnsalkeld10884 жыл бұрын
Dominated convergence
@ta19494 жыл бұрын
flammy u should do a video trying out oxford or cambridge's mathematical admission test
@sharpfang4 жыл бұрын
I wonder if there's a connection to (x+1)^n polynomial factors. The factors are nth line of the Pascal's Triangle, and there's a strong connection between the Pascal's Triangle and the Fibonacci Sequence.
@vivovivi57034 жыл бұрын
yay! flammy goes coding!!
@nicholasthesilly4 жыл бұрын
Relevant: en.wikipedia.org/wiki/Euler_function C would be this function at -1/phi^2.
@PapaFlammy694 жыл бұрын
yup, C is simply a q-pochhammer symbol^^
@angelmendez-rivera3514 жыл бұрын
Yes. This would mean that C is equal to the sum over every integer n in Z of (-1)^[(3n^2 + n)/2]/φ^(3n^2 - n). Also, you can manipulate the product definition to obtain different expressions as well. For instance, Φ(-1/φ^2) = Π{n >= 1; 1 - (-1)^n/φ^(2n)}, but (-1)^n = i^(2n), so C = Π{n >= 1; [1 - (i/φ)^n]·[1 + (i/φ)^n]}, and now it may be worth investigating whether the products Π{n >= 1; 1 - (i/φ)^n} and Π{n >= 1 + (i/φ)^n} converge individually. The first product is just Φ(i/φ) if it converges, and since the factors of the second product are the conjugates of the factors of the first product, I would expect that the convergence of the first product imply the convergence of the second.
@mind-h4i4 жыл бұрын
Wow early to a flammy math video
@pimmm4 жыл бұрын
you showed up on my recommended, in case you are curious.
@djvalentedochp4 жыл бұрын
square root ov faaaav
@Vaaaaadim3 жыл бұрын
I wouldn't necessarily trust Method 1 you show for computing the constant, given the floating point calculations have to round. Hm, something that might be neat would be to have some sort of library that does your computations, but also tallies up the accumulation of rounding errors.
@jordanhansen66494 жыл бұрын
How is this guy so cool ?
@technoguyx4 жыл бұрын
Damn, someday I'll have that huge sexy dynamics rag at my office. First I'd need to get an office, though
@samuelemorreale75104 жыл бұрын
What IDE are you using in this video?
@ichdu27574 жыл бұрын
Almandeutsch: Flammable Maths
@jakemoll4 жыл бұрын
Couldn’t you also find a Stirling approximation equivalent by saying ln(n!F) = integral(1, n){Fn dn} and use a continuous formula for Fn? Can’t think exactly how it would look or whether it would work
@lieflundmark35644 жыл бұрын
Good evening (where I live), fellow mathematicians!
@prakharanand70124 жыл бұрын
Where I live too
@toniokettner48214 жыл бұрын
@@gigagrzybiarz yes
@Leo-rh6rq4 жыл бұрын
Sehr interessant und gut erklärt. Gibt es sonst noch mysteriöse Zahlenreihen oder ähnliches wie π, e bzw hier Phi? Ich verstehe nicht alles auf Universitätsniveau, aber interessant ist es trotzdem.
@shusanniblack75134 жыл бұрын
Can you help me solve a/b=b.a????
@TheRemixDenuo4 жыл бұрын
How can phi* = -1/phi? Wouldn't that imply 0 < |phi|^2 = phi * -1/phi = -1?
@ethansolly964 жыл бұрын
It's not the complex conjugate, it's just notation for the conjugate root of x^2 - x - 1 = 0
@angelmendez-rivera3514 жыл бұрын
If φ = [1 + sqrt(5)]/2, then φ = 1 + 1/φ, hence φ - 1 = 1/φ, hence 1 - φ = -1/φ, and 1 - φ = 1 - [1 + sqrt(5)]/2 = [1 - sqrt(5)]/2. This is the other solution to the equation x = 1 + 1/x, and so it is often denoted φ*.
@mightloki81813 жыл бұрын
we need to get the likes to
@DarkMonolth4 жыл бұрын
Papa you should make a GitHub to post all your code in. So you look like a real software boi
@eulermed4 жыл бұрын
It's not the limit when it goes to infinity, you didn't read Ababou's proof, it's the limit when it goes to the universe's age :(
@chunkynorris1004 жыл бұрын
hmm yes dedekind eta or euler function and the golden ratio
@moonlightcocktail4 жыл бұрын
I think this will approximate phi^(nth triangular number)
@longphung48744 жыл бұрын
IM GETTING THAT EULEROID SHIRT RIgHT NOw
@PapaFlammy694 жыл бұрын
Nice! :D
@emredogan21024 жыл бұрын
Ahh papa I see you're a man of culture as well😉
@АлександрКовалев-о7я4 жыл бұрын
step by step think 'bout it
@weebrahim4 жыл бұрын
Poggers got that twitter notification
@wernerheisenberg71924 жыл бұрын
3 Views, 3 Likes. Hell ya!
@Trekistar4 жыл бұрын
25
@hamsterdam19424 жыл бұрын
ya know, 4 is also the mathematical constant
@arielfuxman88684 жыл бұрын
Let us wait and see if this constant will have any real world applications
@guill39784 жыл бұрын
Is that constant a transcendental number?
@PapaFlammy694 жыл бұрын
We don't know sadly :'(
@guill39784 жыл бұрын
Try to deduce it.
@guill39784 жыл бұрын
Find a proof or a disproof.
@JB-ym4up4 жыл бұрын
Says Fn but writes Fu. Seems legit.
@twrk1394 жыл бұрын
But how can something be most unknown?
@cornelhanekom56894 жыл бұрын
Proof by calculator🤣
@atharvasharma34924 жыл бұрын
Hello
@mr.unknowngamer21094 жыл бұрын
Hi!! Do u remember me . Last time u gave me a heart😁😁.
@user-me7hx8zf9y3 жыл бұрын
anime deskpad >:(
@toniokettner48213 жыл бұрын
your numerik vorlesung was a bit too far in the past ;)
@pearlsek4 жыл бұрын
The breaking up of the limit at 13:41 is not legal because you didn't prove that one of the limits exists... Makes for ok math entertainment but not sure you should give the impression this kind of invalid reasoning is acceptable
@angelmendez-rivera3514 жыл бұрын
It's a heuristic. It's not difficult for the viewer to see that the limit exists.