Fibonacci Factorial & the Most Unknown Mathematical Constant [ PyMath #5 ]

  Рет қаралды 22,201

Flammable Maths

Flammable Maths

Күн бұрын

Пікірлер: 118
@NPCooking69
@NPCooking69 4 жыл бұрын
*Hot damn, I love that Constant! Check out the new STEMweek deals btw! 10% off the WHOLE Brand New Nonlinear Dynamics & Chaos Collection! :0* stemerch.com/collections/nonlinear-dynamics-chaos Also, if you're still looking for the perfect Christmas present make sure to try out Brilliant! brilliant.org/FlammableMaths
@neurophilosophers994
@neurophilosophers994 4 жыл бұрын
There is a list of fractal’s of increasing Haussdorff dimension on Wikipedia. But why is there no procedural way to generate fractal shapes of every dimension across the continuum ? In the same way Conway generates all 0 to 1 dimensional numbers with Surreal Numbers ? Is there a possible connection ?
@wansichen3743
@wansichen3743 4 жыл бұрын
you should try compute this in log space like a normal person does
@wansichen3743
@wansichen3743 4 жыл бұрын
you can also define long double instead of just double in python to avoid the issue you have there
@KillianDefaoite
@KillianDefaoite 4 жыл бұрын
16:48 "We need math.sqrt" **(1/2): am I a joke to you?
@frozenmoon998
@frozenmoon998 4 жыл бұрын
Andrew from the basement: *your floor function is too loud, I can't sleep*
@daveconerly1450
@daveconerly1450 3 жыл бұрын
Now this is the old flammy that is so entertaining. Even though ive watched you for years , and I've never received a response except for the infamous WTF I am one of your biggest fans. You motivate me to see life in a whole different light. " A stroke of genius " put me on my death bed.
@PapaFlammy69
@PapaFlammy69 3 жыл бұрын
@tomkerruish2982
@tomkerruish2982 4 жыл бұрын
The infinite product (1-t)(1-t^2)(1-t^3)••• shows up when dealing with the partition function. Mathologer recently made a video about this. Euler showed that the product resolves to 1-t-t^2+t^5+t^7-••• with the nonvanishing teen's3 having exponents that are pentagonal numbers. This should aid in the calculation of the Fibonorial constant.
@hauntedmasc
@hauntedmasc 4 жыл бұрын
your python skills are improving papa! a nice trick you can abuse in python for "swap"-type functionality is the following: -- code -- a, b = 1, 1 for iterate in range(3, n): a, b = b, a + b -- /code -- simultaneous assignment abuse!
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
great stuff, I'll use that next time! =)
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
great stuff, I'll use that next time! =)
@michaeljones1686
@michaeljones1686 4 жыл бұрын
python ez
@Ricocossa1
@Ricocossa1 4 жыл бұрын
Here's another cosmetic change you can do: instead of having your first and second fibonacci floating around in the global scope, you could make your fib function a generator function. Simply replace "return" by "yield" and your function will remember the values of its variables between calls. :) Edit: I wrote this before realizing you were going for a for loop and not a function. But it's still useful stuff to know.
@martinepstein9826
@martinepstein9826 4 жыл бұрын
"57isprime" Nice.
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
Finally someone noticed XD Good catch Martin! :D
@chonpincher
@chonpincher 4 жыл бұрын
Yes, it's the famous Grothendieck prime.
@steve2817
@steve2817 3 жыл бұрын
Python blows up when number is greater than 1.79e+308, greater numbers are defined as 'inf'
@calculusphysicschemaccountingt
@calculusphysicschemaccountingt 4 жыл бұрын
BTW, you need to sleep more and maintain your health because I saw your black circle under your eyes.
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
I'm still ill^^
@ComBOT
@ComBOT 4 жыл бұрын
@@PapaFlammy69 don't lie, you're trying to prove twin prime We know
@erencan1453
@erencan1453 4 жыл бұрын
@@PapaFlammy69 Good Besserung!
@longphung4874
@longphung4874 4 жыл бұрын
@@PapaFlammy69 Papa I know you’re trying to prove Navier Stokes
@Kdd160
@Kdd160 4 жыл бұрын
@@PapaFlammy69 get well soon 😀
@youtuberdisguiser6075
@youtuberdisguiser6075 4 жыл бұрын
Guys i just want to remind you to upvote and comment on his videos, so that the algorithm treats his videos better. ^^
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
awwwww
@josephmichail4428
@josephmichail4428 4 жыл бұрын
phi^1*phi^2*phi^3*...phi^n = phi^(1 + 2 + 3 + ... n) = phi^(-1/12)
@smrtfasizmu6161
@smrtfasizmu6161 4 жыл бұрын
Python is kind of similar to C++ C and Pascal programming language, I was able to follow this even though I never studied python
@TobyAsE120
@TobyAsE120 4 жыл бұрын
python is pseudo code that actually runs
@Nothingtonnobodson
@Nothingtonnobodson 2 жыл бұрын
@@TobyAsE120 I use to use java, trying to shift to python
@HAL-oj4jb
@HAL-oj4jb 4 жыл бұрын
Some guy probably: Asks you for your QnA on Sunday what your favourite constant is Papa Flammy: Makes a whole video about it
@ivanoliveira9784
@ivanoliveira9784 4 жыл бұрын
0:32 I was expecting him to say "Hello Kitty Cats", but he didn't ;-;.
@debblez
@debblez 4 жыл бұрын
“57 is prime” STOP 😭
@maciejsiedlecki8473
@maciejsiedlecki8473 4 жыл бұрын
Great video as always! You may actually want to look for some "arbitrary precision calculations". For example - python "decimal" library. It will give you way better result (literally - waaay more digits after the comma). Looking forward for more PyMath videos :)
@MrRyanroberson1
@MrRyanroberson1 4 жыл бұрын
fun fact: it converges so fast that prod(38) already gives you the highest precision result that default floats can compute.
@MrRyanroberson1
@MrRyanroberson1 4 жыл бұрын
actually: if you plot it in desmos, it's even more incredible! instead of -1/phi^2, try the product from 1 to 100 of (1-x^n), it produces such an interesting curve. the fibonorial constant is the special output for x=-1/phi^2; the function converges to finite values for |x|
@smrtfasizmu6161
@smrtfasizmu6161 4 жыл бұрын
You could have also initialized fib = 1, s = 1 and then in the loop put p*= fib, f =s, s = fib before fib = s + f Then the loop runs from 2 instead of 3, because the product p that you get in first iteration is 1*1 which is the first Fibonacci number multiplied by the second one
@luchisevera1808
@luchisevera1808 4 жыл бұрын
An infinite product of immortal rabbits getting it on
@beardedboulderer2609
@beardedboulderer2609 4 жыл бұрын
I didn't know drinking water while watching Papa Flammy could be so dangerous until I saw the intro meme... Love it!
@sicko_the_ew
@sicko_the_ew 4 жыл бұрын
You could try out this (f,s) = (s, fib). If it doesn't work, that's too bad, but you might as well try it. It might be necessary to start out with a tuple, (f, s) instead of individual variables. (You could also try f,s = s,fib , without the parentheses, but that might be confusing to begin with). The aim is this: (var0, var1, var2 .., varN) = (eval0, eval1, .. evalN) - which you've probably encountered before. Nice for swapping values. Just write a, b = b, a
@The1RandomFool
@The1RandomFool 4 жыл бұрын
SageMath can handle very large numbers, and custom functions for it are programmed in Python as well. With the built-in functions the Fibonacci factorial can be expressed as prod(fibonacci_sequence(1,50)), which multiplies the Fibonacci numbers in a certain range. The C constant can be computed to 100 digits with product(1-(-1)^k/golden_ratio^(2*k),k,1,300).n(digits=100). Interestingly, the Fibonacci factorial constant was already put on the Online Encyclopedia of Integer Sequences in 2001.
@hbowman108
@hbowman108 3 жыл бұрын
In conventional factorials, the product of the first zero integers isn't zero, it's one.
@rogergarridovilallave9341
@rogergarridovilallave9341 9 ай бұрын
The fibonorial constant is the value of the Q-pochhamer symbol with z=1, q=-phi^{-2}, i.e. it is (1; -phi^{-2})_infty
@zorrozalai
@zorrozalai 4 жыл бұрын
Fun fact: if you draw a Pascal's triangle, pick up a point on it's side and you start to jump like a chess knight, then the sum of the visited numbers will always be a fibonacci number. Going downward: 1+3+1 = 5, 1+6+5+1=13, 1+10+15+7+1=34. Going upward: 1+2=3, 1+4+3 =8 ...
@Demki
@Demki 4 жыл бұрын
Up next: gnuctorial - where you take the product of the number of groups of order k (or as Conway called it, gnu(k)) for k between 1 and n and the trivial gnuctorial - where you take the product gnu(k) for k between 0 and n the second one is trivial because there are 0 groups of order 0...
@roberthrusecky9439
@roberthrusecky9439 4 жыл бұрын
I thought it was when you compile successive versions of the GNU compiler toolchain with the previous one
@hotlinkster123
@hotlinkster123 4 жыл бұрын
It would have been a nice exercise to plot the convergence of both methods in python.
@duncanw9901
@duncanw9901 4 жыл бұрын
I think non-computable numbers might be less well known :D I did like phi=2 engineer++ method there at 8:48 and a quick python tip: in 3.x you can use the "double asterisk" operator for exponentiation, so you don't have to import math.sqrt() or math.pow() but just use 5 ** 0.5 (edit: you did this for the other part I look dumb now)
@unknownpalooza8475
@unknownpalooza8475 4 жыл бұрын
Sometimes, mathematics can be very mysterious also... Oh boi, this gets pretty intense...
@georgecantu856
@georgecantu856 4 жыл бұрын
bruh I just started learning python, you are a psychic dude
@dominikstepien2000
@dominikstepien2000 4 жыл бұрын
0:31 I was expecting papa saying 'including those very neat, cute kitties'
@a_llama
@a_llama 4 жыл бұрын
liking for the algorithm!
@BlackHermit
@BlackHermit 4 жыл бұрын
Fibonacci was not insane! He was an Italian mathematician from the Republic of Pisa, which is the mark of sanity! Fibonacci was a guest of Emperor Frederick II, who enjoyed mathematics and science. I love him so much... Dear Fibonacci Your series is great Dear Fibonacci Please open the gate!
@VaradMahashabde
@VaradMahashabde 4 жыл бұрын
13:45 Nah your brain was thinking ten steps ahead and took the log already
@garvett6660
@garvett6660 4 жыл бұрын
*wipes tears off *it’s beautiful...*
@arkitson
@arkitson 4 жыл бұрын
The Fibonacci factorial constant can be expressed in terms of the derivative of the Jocobi theta function of the first kind. See: arXiv:math/0608187
@everettknag7243
@everettknag7243 4 жыл бұрын
Great video!
@jarogniewborkowski5284
@jarogniewborkowski5284 4 жыл бұрын
Hmm... Double chaotic pendulum. What do You think about 3 body problem? Is there also chaos or not? I have heard about Sundman, who probably has already solved this "chaos". Maybe You could make some video about it. Best regards
@Kdd160
@Kdd160 4 жыл бұрын
Papa you are soo creative 😄😄
@Ryan-gq2ji
@Ryan-gq2ji 2 жыл бұрын
would there be a way to extend the Fibonorial to all real numbers greater than zero?
@nullinf
@nullinf 4 жыл бұрын
How’d you get the slidey-chalkboard in your room :0
@Tomaplen
@Tomaplen 4 жыл бұрын
Factoriacci
@johnsalkeld1088
@johnsalkeld1088 4 жыл бұрын
Dominated convergence
@ta1949
@ta1949 4 жыл бұрын
flammy u should do a video trying out oxford or cambridge's mathematical admission test
@sharpfang
@sharpfang 4 жыл бұрын
I wonder if there's a connection to (x+1)^n polynomial factors. The factors are nth line of the Pascal's Triangle, and there's a strong connection between the Pascal's Triangle and the Fibonacci Sequence.
@vivovivi5703
@vivovivi5703 4 жыл бұрын
yay! flammy goes coding!!
@nicholasthesilly
@nicholasthesilly 4 жыл бұрын
Relevant: en.wikipedia.org/wiki/Euler_function C would be this function at -1/phi^2.
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
yup, C is simply a q-pochhammer symbol^^
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
Yes. This would mean that C is equal to the sum over every integer n in Z of (-1)^[(3n^2 + n)/2]/φ^(3n^2 - n). Also, you can manipulate the product definition to obtain different expressions as well. For instance, Φ(-1/φ^2) = Π{n >= 1; 1 - (-1)^n/φ^(2n)}, but (-1)^n = i^(2n), so C = Π{n >= 1; [1 - (i/φ)^n]·[1 + (i/φ)^n]}, and now it may be worth investigating whether the products Π{n >= 1; 1 - (i/φ)^n} and Π{n >= 1 + (i/φ)^n} converge individually. The first product is just Φ(i/φ) if it converges, and since the factors of the second product are the conjugates of the factors of the first product, I would expect that the convergence of the first product imply the convergence of the second.
@mind-h4i
@mind-h4i 4 жыл бұрын
Wow early to a flammy math video
@pimmm
@pimmm 4 жыл бұрын
you showed up on my recommended, in case you are curious.
@djvalentedochp
@djvalentedochp 4 жыл бұрын
square root ov faaaav
@Vaaaaadim
@Vaaaaadim 3 жыл бұрын
I wouldn't necessarily trust Method 1 you show for computing the constant, given the floating point calculations have to round. Hm, something that might be neat would be to have some sort of library that does your computations, but also tallies up the accumulation of rounding errors.
@jordanhansen6649
@jordanhansen6649 4 жыл бұрын
How is this guy so cool ?
@technoguyx
@technoguyx 4 жыл бұрын
Damn, someday I'll have that huge sexy dynamics rag at my office. First I'd need to get an office, though
@samuelemorreale7510
@samuelemorreale7510 4 жыл бұрын
What IDE are you using in this video?
@ichdu2757
@ichdu2757 4 жыл бұрын
Almandeutsch: Flammable Maths
@jakemoll
@jakemoll 4 жыл бұрын
Couldn’t you also find a Stirling approximation equivalent by saying ln(n!F) = integral(1, n){Fn dn} and use a continuous formula for Fn? Can’t think exactly how it would look or whether it would work
@lieflundmark3564
@lieflundmark3564 4 жыл бұрын
Good evening (where I live), fellow mathematicians!
@prakharanand7012
@prakharanand7012 4 жыл бұрын
Where I live too
@toniokettner4821
@toniokettner4821 4 жыл бұрын
@@gigagrzybiarz yes
@Leo-rh6rq
@Leo-rh6rq 4 жыл бұрын
Sehr interessant und gut erklärt. Gibt es sonst noch mysteriöse Zahlenreihen oder ähnliches wie π, e bzw hier Phi? Ich verstehe nicht alles auf Universitätsniveau, aber interessant ist es trotzdem.
@shusanniblack7513
@shusanniblack7513 4 жыл бұрын
Can you help me solve a/b=b.a????
@TheRemixDenuo
@TheRemixDenuo 4 жыл бұрын
How can phi* = -1/phi? Wouldn't that imply 0 < |phi|^2 = phi * -1/phi = -1?
@ethansolly96
@ethansolly96 4 жыл бұрын
It's not the complex conjugate, it's just notation for the conjugate root of x^2 - x - 1 = 0
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
If φ = [1 + sqrt(5)]/2, then φ = 1 + 1/φ, hence φ - 1 = 1/φ, hence 1 - φ = -1/φ, and 1 - φ = 1 - [1 + sqrt(5)]/2 = [1 - sqrt(5)]/2. This is the other solution to the equation x = 1 + 1/x, and so it is often denoted φ*.
@mightloki8181
@mightloki8181 3 жыл бұрын
we need to get the likes to
@DarkMonolth
@DarkMonolth 4 жыл бұрын
Papa you should make a GitHub to post all your code in. So you look like a real software boi
@eulermed
@eulermed 4 жыл бұрын
It's not the limit when it goes to infinity, you didn't read Ababou's proof, it's the limit when it goes to the universe's age :(
@chunkynorris100
@chunkynorris100 4 жыл бұрын
hmm yes dedekind eta or euler function and the golden ratio
@moonlightcocktail
@moonlightcocktail 4 жыл бұрын
I think this will approximate phi^(nth triangular number)
@longphung4874
@longphung4874 4 жыл бұрын
IM GETTING THAT EULEROID SHIRT RIgHT NOw
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
Nice! :D
@emredogan2102
@emredogan2102 4 жыл бұрын
Ahh papa I see you're a man of culture as well😉
@АлександрКовалев-о7я
@АлександрКовалев-о7я 4 жыл бұрын
step by step think 'bout it
@weebrahim
@weebrahim 4 жыл бұрын
Poggers got that twitter notification
@wernerheisenberg7192
@wernerheisenberg7192 4 жыл бұрын
3 Views, 3 Likes. Hell ya!
@Trekistar
@Trekistar 4 жыл бұрын
25
@hamsterdam1942
@hamsterdam1942 4 жыл бұрын
ya know, 4 is also the mathematical constant
@arielfuxman8868
@arielfuxman8868 4 жыл бұрын
Let us wait and see if this constant will have any real world applications
@guill3978
@guill3978 4 жыл бұрын
Is that constant a transcendental number?
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
We don't know sadly :'(
@guill3978
@guill3978 4 жыл бұрын
Try to deduce it.
@guill3978
@guill3978 4 жыл бұрын
Find a proof or a disproof.
@JB-ym4up
@JB-ym4up 4 жыл бұрын
Says Fn but writes Fu. Seems legit.
@twrk139
@twrk139 4 жыл бұрын
But how can something be most unknown?
@cornelhanekom5689
@cornelhanekom5689 4 жыл бұрын
Proof by calculator🤣
@atharvasharma3492
@atharvasharma3492 4 жыл бұрын
Hello
@mr.unknowngamer2109
@mr.unknowngamer2109 4 жыл бұрын
Hi!! Do u remember me . Last time u gave me a heart😁😁.
@user-me7hx8zf9y
@user-me7hx8zf9y 3 жыл бұрын
anime deskpad >:(
@toniokettner4821
@toniokettner4821 3 жыл бұрын
your numerik vorlesung was a bit too far in the past ;)
@pearlsek
@pearlsek 4 жыл бұрын
The breaking up of the limit at 13:41 is not legal because you didn't prove that one of the limits exists... Makes for ok math entertainment but not sure you should give the impression this kind of invalid reasoning is acceptable
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
It's a heuristic. It's not difficult for the viewer to see that the limit exists.
Numerical Solution to the Nonlinear Pendulum Equation [ PyMath #6 ]
22:53
Why 4d geometry makes me sad
29:42
3Blue1Brown
Рет қаралды 632 М.
How Strong is Tin Foil? 💪
00:25
Brianna
Рет қаралды 67 МЛН
I Turned My Mom into Anxiety Mode! 😆💥 #prank #familyfun #funny
00:32
Disrespect or Respect 💔❤️
00:27
Thiago Productions
Рет қаралды 36 МЛН
The unexpected probability result confusing everyone
17:24
Stand-up Maths
Рет қаралды 767 М.
On These Questions, Smarter People Do Worse
14:35
Veritasium
Рет қаралды 3,3 МЛН
How I animate 3Blue1Brown | A Manim demo with Ben Sparks
53:41
3Blue1Brown
Рет қаралды 983 М.
PyMath #1 - When Dividorial and π Meet - Their Beautiful Relationship
19:34
How on Earth does ^.?$|^(..+?)\1+$ produce primes?
18:37
Stand-up Maths
Рет қаралды 375 М.
The Strange Physics Principle That Shapes Reality
32:44
Veritasium
Рет қаралды 5 МЛН
50 Constants Explained
16:21
Digital Genius
Рет қаралды 344 М.
Group theory, abstraction, and the 196,883-dimensional monster
21:58
3Blue1Brown
Рет қаралды 3,1 МЛН
How Strong is Tin Foil? 💪
00:25
Brianna
Рет қаралды 67 МЛН