Great point! I didn't realize that Parseval is for 2-pi periodic functions (i.e. for the Fourier series), while Plancharel is for the continuous generalization (i.e. for the Fourier transform). Thanks for pointing this out.
@cosmic_kid2868 Жыл бұрын
In the context of Fourier Transforms, they are pretty much the same. Plus, the equality statement in the beginning of the video is a statement from Parseval's Theorem.
@ANJA-mj1to Жыл бұрын
#Now I have seen on Google that Plancharel's Theorem is used in non-periodic continuous functions (i. e. of Fourier transform) but in case of Fourier serias we use Parseval's Theorem (i. e. periodic). It is from engineering approach so I comment Parseval's Theorem vs Plancharel's Theorem. But in my opinion it can bring many problems for findind a power in a long, not small, periodic waveform dispersion.
@yesntpittzant41564 жыл бұрын
I'm astounded that you offer so much insight into this topic with this playlist and explain it so good. It's free and better explained than some paid courses, I'm really thankful for that :D
@sehailfillali6154 жыл бұрын
Thanks a lot for making this material.
@zoasis78053 жыл бұрын
If you listen carefully he says your name at 0:39
@avi-brown3 жыл бұрын
lol
@Pheosis3 жыл бұрын
hmm thats weird, I heard mine at 0:35
@welcomeback73182 жыл бұрын
thats weird, I heard mine at 0:06
@unkownuser10422 жыл бұрын
Best play list of fourier transform so far....
@agrajyadav2951 Жыл бұрын
why are u such a legend?
@carlosherrero49904 жыл бұрын
love you and peace bro!
@Eigensteve4 жыл бұрын
Peace!
@NickFilipovic4 жыл бұрын
Thank you again, greetings from the other UW (University of Waterloo)
@ANJA-mj1to Жыл бұрын
#Now I have seen on Google that Plancharel's Theorem is used in non-periodic continuous functions (i. e. of Fourier transform) but in case of Fourier serias we use Parseval's Theorem (i. e. periodic). It is from engineering approach so I comment Parseval's Theorem vs Plancharel's Theorem. But in my opinion it can bring many problems for findind a power in a long, not small, periodic waveform dispersion.
@sukursukur36174 жыл бұрын
Why is energy defined as integrate of square of signal function? 3:40
@miguelmondardo27414 жыл бұрын
That's one way to measure a signal (you can also measure by their power, if the energy is infinite). The phisical meaning is that if you have a load of 1 ohm and x(t) is your voltage or current (V=R*I, if R=1 => V=I), the energy calculated is the energy that dissipates in that load.
@sukursukur36174 жыл бұрын
@@miguelmondardo2741 thank you. But i didnt understand your answer
@sanjitfranklin4 жыл бұрын
This was really well explained. Thanks!
@saitaro4 жыл бұрын
First like, then watch.
@sonasol1211213 жыл бұрын
I wondered for a bit, is Steve left-handed? Then I created this scenario on my head trying to understand, my first guess is yes, he's indeed left-handed. Anyway, I'm loving the series, I will indeed watch all the videos on all the playlists! Good to see there are people willing to make others learn. Thank you.
@finnjake61744 жыл бұрын
THANK YOU!!!
@davidcalhas84172 жыл бұрын
Great explanation! Can anyone point me to a place where this theorem is related for other transforms? E.g. such as the cosine transform?
@giziemcbarns3 жыл бұрын
Aren't all numbers the same?
@sajidhaniff014 жыл бұрын
Many thanks!
@emanuellandeholm56573 жыл бұрын
Energy, ie. the conserved quantity, is not in the integral of the norm, it's in the integral of the norm squared. Huge difference. Why be this sloppy?
@GauravGupta-pb8mk4 жыл бұрын
Thank you sir
@akashbhullar4 жыл бұрын
Hold On Hold On. Is this necessary for Data Science?
@Eigensteve4 жыл бұрын
If you want to compress your data and have any guarantee on the fidelity of your reconstruction, then yes.
@stephaniesmith43374 жыл бұрын
Is he writing backwards or is this some videography trick?
@justinburzachiello18974 жыл бұрын
Video trick
@dianemckimmy57014 жыл бұрын
#parsevalmusoc
@damemer87243 жыл бұрын
Bhaiya kuch samajh nahi aya
@nomtomm4 жыл бұрын
are you writing backward or are finals finally getting to me