Parseval's Theorem

  Рет қаралды 70,365

Steve Brunton

Steve Brunton

Күн бұрын

Пікірлер: 36
@JobykoIL25
@JobykoIL25 Жыл бұрын
It's Plancharel's theorem BTW not Parseval's
@Eigensteve
@Eigensteve Жыл бұрын
Great point! I didn't realize that Parseval is for 2-pi periodic functions (i.e. for the Fourier series), while Plancharel is for the continuous generalization (i.e. for the Fourier transform). Thanks for pointing this out.
@cosmic_kid2868
@cosmic_kid2868 Жыл бұрын
In the context of Fourier Transforms, they are pretty much the same. Plus, the equality statement in the beginning of the video is a statement from Parseval's Theorem.
@ANJA-mj1to
@ANJA-mj1to Жыл бұрын
#Now I have seen on Google that Plancharel's Theorem is used in non-periodic continuous functions (i. e. of Fourier transform) but in case of Fourier serias we use Parseval's Theorem (i. e. periodic). It is from engineering approach so I comment Parseval's Theorem vs Plancharel's Theorem. But in my opinion it can bring many problems for findind a power in a long, not small, periodic waveform dispersion.
@yesntpittzant4156
@yesntpittzant4156 4 жыл бұрын
I'm astounded that you offer so much insight into this topic with this playlist and explain it so good. It's free and better explained than some paid courses, I'm really thankful for that :D
@sehailfillali615
@sehailfillali615 4 жыл бұрын
Thanks a lot for making this material.
@zoasis7805
@zoasis7805 3 жыл бұрын
If you listen carefully he says your name at 0:39
@avi-brown
@avi-brown 3 жыл бұрын
lol
@Pheosis
@Pheosis 3 жыл бұрын
hmm thats weird, I heard mine at 0:35
@welcomeback7318
@welcomeback7318 2 жыл бұрын
thats weird, I heard mine at 0:06
@unkownuser1042
@unkownuser1042 2 жыл бұрын
Best play list of fourier transform so far....
@agrajyadav2951
@agrajyadav2951 Жыл бұрын
why are u such a legend?
@carlosherrero4990
@carlosherrero4990 4 жыл бұрын
love you and peace bro!
@Eigensteve
@Eigensteve 4 жыл бұрын
Peace!
@NickFilipovic
@NickFilipovic 4 жыл бұрын
Thank you again, greetings from the other UW (University of Waterloo)
@ANJA-mj1to
@ANJA-mj1to Жыл бұрын
#Now I have seen on Google that Plancharel's Theorem is used in non-periodic continuous functions (i. e. of Fourier transform) but in case of Fourier serias we use Parseval's Theorem (i. e. periodic). It is from engineering approach so I comment Parseval's Theorem vs Plancharel's Theorem. But in my opinion it can bring many problems for findind a power in a long, not small, periodic waveform dispersion.
@sukursukur3617
@sukursukur3617 4 жыл бұрын
Why is energy defined as integrate of square of signal function? 3:40
@miguelmondardo2741
@miguelmondardo2741 4 жыл бұрын
That's one way to measure a signal (you can also measure by their power, if the energy is infinite). The phisical meaning is that if you have a load of 1 ohm and x(t) is your voltage or current (V=R*I, if R=1 => V=I), the energy calculated is the energy that dissipates in that load.
@sukursukur3617
@sukursukur3617 4 жыл бұрын
@@miguelmondardo2741 thank you. But i didnt understand your answer
@sanjitfranklin
@sanjitfranklin 4 жыл бұрын
This was really well explained. Thanks!
@saitaro
@saitaro 4 жыл бұрын
First like, then watch.
@sonasol121121
@sonasol121121 3 жыл бұрын
I wondered for a bit, is Steve left-handed? Then I created this scenario on my head trying to understand, my first guess is yes, he's indeed left-handed. Anyway, I'm loving the series, I will indeed watch all the videos on all the playlists! Good to see there are people willing to make others learn. Thank you.
@finnjake6174
@finnjake6174 4 жыл бұрын
THANK YOU!!!
@davidcalhas8417
@davidcalhas8417 2 жыл бұрын
Great explanation! Can anyone point me to a place where this theorem is related for other transforms? E.g. such as the cosine transform?
@giziemcbarns
@giziemcbarns 3 жыл бұрын
Aren't all numbers the same?
@sajidhaniff01
@sajidhaniff01 4 жыл бұрын
Many thanks!
@emanuellandeholm5657
@emanuellandeholm5657 3 жыл бұрын
Energy, ie. the conserved quantity, is not in the integral of the norm, it's in the integral of the norm squared. Huge difference. Why be this sloppy?
@GauravGupta-pb8mk
@GauravGupta-pb8mk 4 жыл бұрын
Thank you sir
@akashbhullar
@akashbhullar 4 жыл бұрын
Hold On Hold On. Is this necessary for Data Science?
@Eigensteve
@Eigensteve 4 жыл бұрын
If you want to compress your data and have any guarantee on the fidelity of your reconstruction, then yes.
@stephaniesmith4337
@stephaniesmith4337 4 жыл бұрын
Is he writing backwards or is this some videography trick?
@justinburzachiello1897
@justinburzachiello1897 4 жыл бұрын
Video trick
@dianemckimmy5701
@dianemckimmy5701 4 жыл бұрын
#parsevalmusoc
@damemer8724
@damemer8724 3 жыл бұрын
Bhaiya kuch samajh nahi aya
@nomtomm
@nomtomm 4 жыл бұрын
are you writing backward or are finals finally getting to me
@abhishekmichaelchand4051
@abhishekmichaelchand4051 2 жыл бұрын
yo this is breaking my brain too
Solving the Heat Equation with the Fourier Transform
11:28
Steve Brunton
Рет қаралды 106 М.
The Discrete Fourier Transform (DFT)
17:36
Steve Brunton
Рет қаралды 361 М.
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН
The Lost World: Living Room Edition
0:46
Daniel LaBelle
Рет қаралды 27 МЛН
$1 vs $500,000 Plane Ticket!
12:20
MrBeast
Рет қаралды 122 МЛН
Wavelets and Multiresolution Analysis
15:12
Steve Brunton
Рет қаралды 147 М.
Parseval's Theorem (Fourier series engineering mathematics)
20:19
blackpenredpen
Рет қаралды 109 М.
Inner Products in Hilbert Space
8:41
Steve Brunton
Рет қаралды 126 М.
Parseval's Identity, Fourier Series, and Solving this Classic Pi Formula
11:34
Fourier Series: Part 1
12:16
Steve Brunton
Рет қаралды 194 М.
The Laplace Transform: A Generalized Fourier Transform
16:28
Steve Brunton
Рет қаралды 312 М.
The Spectrogram and the Gabor Transform
13:15
Steve Brunton
Рет қаралды 66 М.
Denoising Data with FFT [Python]
10:03
Steve Brunton
Рет қаралды 178 М.
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН