Can You Make a Quantum Computer out of Olive Oil?

  Рет қаралды 146,232

Physics for the Birds

Physics for the Birds

Күн бұрын

Thank you to Brilliant for sponsoring this video! To try out interactive STEM courses for free, visit brilliant.org/PhysicsfortheBi.... The first 200 subscribers will get 20% off of an annual premium subscription.
Why on earth did Wikipedia say that olive oil performs spontaneous parametric down-conversion? In this video, we learn the basics of quantum mechanics and we use it to explain why extra virgin olive oil shines red with a green laser. We also learn how scientists were able to use a protein found in jellyfish (and GloFish!) to create entangled particles.
0:00 Introduction
2:12 Quantum Mechanics
6:10 Olive Oil and Chlorophyll
10:07 Green Fluorescent Protein
13:13 Message from Sponsor
QM Reference: Intro to Quantum Mechanics, Griffiths
Olive Oil Science: www.aromadictionary.com/EVOO_b...}
More Olive Oil Science: pubs.aip.org/aapt/pte/article...
Entanglement in Green Fluorescent Protein: www.nature.com/articles/s4146...

Пікірлер: 359
@ganymedemlem6119
@ganymedemlem6119 Жыл бұрын
I think it is important to clarify that it is not "observing" a quantum system that makes it resolve itself into a specific outcome, but rather the object interacting with something other than itself that forces it to resolve its state. The object is not conscious and it happens independently of human observation. It's important to consider the language we use so as to not give the quantum systems, nor ourselves supernatural qualities.
@pluto9000
@pluto9000 Жыл бұрын
Interaction is observation - Chris Fields
@ganymedemlem6119
@ganymedemlem6119 Жыл бұрын
@@pluto9000 In the context, yes. But most people don't have that background. It's important to make that distinction clear. To "observe" something you have to interact with it. You must change it by affecting it.
@0FAS1
@0FAS1 Жыл бұрын
This distinction disappears the moment one realizes that "conscious matter" is not any different than "ordinary matter". Existence observes itself with or without the awareness of the observation/interaction/interdependence
@ganymedemlem6119
@ganymedemlem6119 Жыл бұрын
@@0FAS1 But that isn't common knowledge and not making that clear can build an inaccurate understanding of concepts in science.
@GhostGlitch.
@GhostGlitch. Жыл бұрын
​@@0FAS1 the problem is, not everyone is a materialist and quantum "observation" had been repeatedly misunderstood and used to "prove" the soul.
@Andreatellsstories65c
@Andreatellsstories65c Жыл бұрын
Using quantum mechanics to understand Olive Oil was not on my Life Bingo Card
@cirecrux
@cirecrux Жыл бұрын
I wonder when the scientists are going to realize that they can just entangle particles with just some string and a pair of tiny baby hands without having to resort to jellyfish and olive garden
@dominicmcg2368
@dominicmcg2368 Жыл бұрын
The particle knows where it is at all times. It knows this because it knows where it isn't, by subtracting where it is, from where it isn't, or where it isn't, from where it is, whichever is greater, it obtains a difference, or deviation. /s
@widmo206
@widmo206 Жыл бұрын
Haha, I saw your comment right after posting mine, also with that reference
@redtaileddolphin1875
@redtaileddolphin1875 Жыл бұрын
This difference is called Error
@charlesmartin1972
@charlesmartin1972 Жыл бұрын
It therefore follows that the particle has no knowledge about it's momentum. It doesn't know its momentum because it doesn't know what its momentum isn't. There is no sensible way to subtract the momentum it has from the momentum it hasn't, nor the momentum it hasn't from the momentum it has, nor is it possible to define a rigorous notion of whichever is greater...
@ChrisContin
@ChrisContin Жыл бұрын
There may be more than one force at work in the particle of light. One electric, which only has a velocity, and the other magnetic, which is only stable in one place! The light is moving unless it has a reason to stall, such as a relationship outside of itself- the measurement is one. Fun!
@Petrolhead99999
@Petrolhead99999 Жыл бұрын
Rockwell Automation has shills for that Turbo Encabulator everywhere.
@ppmico
@ppmico Жыл бұрын
i honestly think this channel is underrated. really excited to see you grow as u deserve
@ppmico
@ppmico Жыл бұрын
like honestly your explanations are very clear and to the point and they are comprehensive, i really appreciate :) its not usual to be able to tackle subjects as difficult as the ones you explain as easily as this channel allows to. thanks :)
@physicsforthebirds
@physicsforthebirds Жыл бұрын
@@ppmico Thanks! I'm always worried that I complicate things too much and I'm also always worried that I simplify things too much, so I'm glad you're getting something from it!
@blacklistnr1
@blacklistnr1 Жыл бұрын
​@@physicsforthebirds I really like your niche/small channel style, when channels go big they usually go towards a more mainstream style which feels like a TV show rather than a genuine random idea fuelled by fun and curiosity. I also like things coming completely out of left field sprinkled with sarcasm and existential crisis. So I really like you overall.
@choppedandspewed
@choppedandspewed Жыл бұрын
@@physicsforthebirds i assure you, i'm pretty dumb, and i find these videos both insightful and feeding a level of curiosity that makes my brain real happy
@archerelms
@archerelms Жыл бұрын
​@@physicsforthebirds I think you do a fantastic job of neither over or under explaining
@sujalgvs987
@sujalgvs987 Жыл бұрын
i love you physics for the birds...
@crisp8039
@crisp8039 Жыл бұрын
Agreed
@physicsforthebirds
@physicsforthebirds Жыл бұрын
Uh... I love you too
@sujalgvs987
@sujalgvs987 Жыл бұрын
@@physicsforthebirds XD im sorry last night i was having a hard time because i couldn't solve even the easiest question. Opened up KZbin very depressed and there it was on the top, a new video from my favorite channel :D
@Kyushu111
@Kyushu111 Жыл бұрын
You videos have such a unique style among other educational content. They are so cozy and warm, and hands-on without reliance on spectacle. I hope you will become even more popular, you really deserve it.
@patricklinder3230
@patricklinder3230 Жыл бұрын
I appreciate you saying "no" right away. You earned that like in that exact moment. Great content
@widmo206
@widmo206 Жыл бұрын
3:25 The electron does not know where it is. It doesn't know this, because it doesn't know where it isn't, so it can't get the deviation by subtracting where it is from where it isn't (or where it isn't from where it is, whichever is greater).
@spindash64
@spindash64 Жыл бұрын
A fully accurate quantum mechanics parody of that would honestly be peak
@YYCUrban
@YYCUrban Жыл бұрын
Hey bird, your videos really strike me. You spark interest in what I otherwise wouldn't consider. I've been involved in the sciences my entire life, and just now, I started university. I struggle a great deal with discovering where I want to go with my studies. I'm currently in bio and chem but physics gets me incredibly excited and I understand it quite well (in a theory aspect). However, I struggle largely with math. I can barely get by calculus on my own and I know physics is all about waves, functions, inverses, etc etc. I just really want to know your opinion when having to delve into physics without proper mathematical skills. I would love to make a career exploring the latest breakthroughs in physics but I'm scared I will struggle and make a wrong choice. Sorry this was such a long comment but I would love to hear what you have to say. Thanks again bird
@hughcaldwell1034
@hughcaldwell1034 Жыл бұрын
Have you heard of 3Blue1Brown and Khan Academy? 3Blue1Brown makes really good animated videos on a whole load of maths topics, including calculus and linear algebra that are really good for building intuition. Khan Academy also makes videos, and they are organised into courses like traditional schooling. They helped a lot in high school and uni.
@physicsforthebirds
@physicsforthebirds Жыл бұрын
I'm glad my videos are interesting enough to make you consider physics! That's exactly why I make them! Everybody's experience is different, but I always thought I was good at math until I started university. I was taking math classes with very smart people and I felt like I wasn't able to keep up. I took linear algebra 3 times in some form or another, first from the math department, then from electrical engineering, then from physics, and what I found was that I really didn't understand most topics until I did them concretely in physics. But once I did physical examples, I was able to go back and understand the math on more abstract levels. If you think you aren't good at math, you should try it in different contexts before you beat yourself up and decide that you'll never learn math. With all that said, you at least need to _enjoy_ math if you want to study physics, even if it takes some searching to figure out when you enjoy it!
@GiovanniKA
@GiovanniKA Жыл бұрын
Found out your channel about a week ago, through the popcorn video and was surprised about how well your videos are made, truly an awesome work. If you keep like that, in no time you’ll get lot of subs and view, rlly appreciate the efforts you put on the animations, talking and even the sources on the description. Hope we see you thrive soon, good work!
@mr.l6332
@mr.l6332 Жыл бұрын
Always excited for a new video from this channel :). Taking a quantum computing course this quarter but it's more focused on the theoretical foundations for qubits and gates. Love to hear these musings on more practical problems when it comes to the physics of obtaining an entangled state :) (and it certainly doesn't hurt that they're accompanied by such cute drawings)
@droher1344
@droher1344 Жыл бұрын
love your stuff. finishing my BSc in physics and these jus kinda scratch my brain the right way. idk why the mood you set while talking about familiar topics just kinda soothes me. thanks
@mr_rede_de_stone916
@mr_rede_de_stone916 Жыл бұрын
Wow, the intro was so efficient at presenting entanglement So clear
@asdf56790
@asdf56790 Жыл бұрын
This was a great video and I really love your story-telling and animations! :)
@jasmine0220
@jasmine0220 Жыл бұрын
I’m so glad I found this channel, thank you so much for creating such unique and inspiring content; I love the way you often explore topics at a scientifically deeper level than many channels, but still keep everything accessible and clear :) I’m looking forward to all of your future content and growth!
@Tythas1
@Tythas1 Жыл бұрын
Can't get enough of these videos, I'm learning so much. Thank you!
@DavidPHH
@DavidPHH Жыл бұрын
New vid from this channel feels like christmas, thanks for the vids & keep up the quality!
@GPEtana
@GPEtana Жыл бұрын
Great to see you already got sponsored by brilliant, good stuff! Love the calm vibe of the videos.
@Joemama-rt4vi
@Joemama-rt4vi Жыл бұрын
This video has amazing explanations of the included bits of quantum mechanics
@dali4323
@dali4323 Жыл бұрын
Amazing video! I am having a related course in uni and I am amazed by the amount of research you put in your videos 😳
@tomax3114
@tomax3114 Жыл бұрын
Really good explanation and graphics. Thanks!!
@classified022
@classified022 Жыл бұрын
Great work again, this is becoming my favorite science youtube channel
@____spacecadet____
@____spacecadet____ Жыл бұрын
I'm really loving the music you use
@zerq4558
@zerq4558 Жыл бұрын
this channel is gold, I'm glad to see you upload these amazing videos every time >:) I hope you will grow to become the next big physics channel you deserve it!
@franklinshields3680
@franklinshields3680 Жыл бұрын
I love this channel, always waiting for a new upload.
@aarondenby1993
@aarondenby1993 4 ай бұрын
Cool stuff, bro. Thanks
@mooncatcher_
@mooncatcher_ Жыл бұрын
Every video is a treat Good job with this one, i liked it a lot
@halfiehunter
@halfiehunter 10 ай бұрын
omg i love ichthyology and quantum mechanics this video is perfect
@thegameformula_
@thegameformula_ Жыл бұрын
The way you explain the material and relate it to physical phenomena is effective and truelly delightfull! Keep it up!
@thegameformula_
@thegameformula_ Жыл бұрын
If you see this, may i ask what your background is?
@Irithind
@Irithind Жыл бұрын
I am so incredibly lucky to have found this channel. I am a linguist, but have always been interested in physics etc. And you are so amazing at explaining it thoroughly and simply at the same time, while also being able to keep my neurodivergent attention for long enough to finish the video. This video may genuinely be the source of the most quantum physics I've ever learned, even though it is a topic I was always interested it. Just didn't seem to really get it before. Welp, sorry for the long comment, guess what I'm saying is: Thank you so much, Birb!
@charlesjoshi5154
@charlesjoshi5154 Жыл бұрын
I wish these effects applies to large scale objects too, that would make the daily life more interesting
@crableah
@crableah Жыл бұрын
I think the biggest issue with understanding quantum mechanics is the use of the term "observe" or "measure" people assume concious observer but any interaction counts as an "observation" or "measurement" even if its two carbon atoms interacting a billion light years away
@doodlevib
@doodlevib Жыл бұрын
Cute cartoon of a dilution refrigerator at 11:34! N.B. 3:49 is accurate but a little imprecise. It’s possible to have linearly or circularly polarized light in a superposition of horizontally and vertically polarized states too (per choice of HV basis). Linear polarization and circular polarization are special cases of elliptical polarization that can correspond to the 50/50 HV probabilities you show at 4:07. N.B. 3:58 and 4:08 are inaccurate, and you need to be careful regarding what parts of this quantum “system” you’re talking about. If you’re talking about the quantum state of the smaller system “photon after polarizer,” the photon already “decided” its polarization (and pass/no-pass) when it encountered the polarizer and was projected onto the vertical state, before it encounters your eyeball. Your eye is not required to modify the photon’s state in this perspective, nor is your eyeball projecting passing photons onto the vertical state. If you’re thinking about the quantum state of a larger system of “photons before and after polarizer,” the polarizer is actually part of the system too. After a photon encounters the polarizer but before encountering your eye, the whole system (photon and polarizer together) is described by a mixed state of “vertical polarized, passing photon” and “messy whatever happens when the photon is absorbed by the polarizer and decoherence kicks in.” If you’re skeptical, consider this: the inner product of the state of any quantum system with itself MUST be 1 (i.e. the system has 100% probability of being in some quantum state). The state corresponding to “50% vertical probability and nothing else” isn’t possible without using mixed states.
@Haxihoovis
@Haxihoovis Жыл бұрын
Finally, a good definition of entanglement. Congrats on you and Chris Ferrie's book for explaining it well.
@randomname285
@randomname285 Жыл бұрын
I love your closing music
@simonlinser8286
@simonlinser8286 Жыл бұрын
This is the video ive been needing, not the one i deserve but the one i needed
@superparadox
@superparadox Жыл бұрын
This video was the first time I've almost understood entanglement and wave function collapse. I'm not quite there because I don't get what actually counts as an observation, plus how do quantum computers work when the particles they're made of don't even know what they are? How can you trust any results to be accurate? Someday I think I'll understand but you helped me take a step in the right direction I think
@pluto9000
@pluto9000 Жыл бұрын
I want to know how to make entangled particles. I want to know how they know it is instantly transmitted to the other particle. Also want to know more but for now I am happy with just understanding these two ideas. 🙋
@patrick1532
@patrick1532 Жыл бұрын
There's nothing special about "observation", it's just that any interaction between a particle and the world forces the wave function to collapse so that a "decision" can be made about how the world should behave in response. Fundamentally, all forms of observation involve outside interaction, because in order to gather information about the state of a particle, that information has to be communicated from the particle to the outside world, and thus the wave function is always collapsed by observation.
@zacyquack
@zacyquack Жыл бұрын
Like he says in the video, an observation is any interaction with the outside world. Observation is a purely conscious concept, which is why some scientists don’t like to use it, but it does work when you consider for us as humans to understand anything, we need to interact with it in one way or another. I’m not an expert on quantum computers, but to my knowledge a qubit is in a superposition of 1 and 0, and using very complicated techniques you can influence the output you receive through the input, and the output should give you certain pieces of information about the input. There are other channels that understand it and can explain it better than me.
@PeachCrusher69
@PeachCrusher69 Жыл бұрын
@@pluto9000 think of it like a coin toss, but this coin is special in that if viewed in a mirror, the heads & tails are switched. if you toss the coin, while in the air, neither the coin, nor anyone else in the world knows what the coin's "polarisation" (heads or tails) is. But as soon as it falls, or you catch it (making an observation), you will immediately know that the coin in the mirror world would be the opposite of your reading, or vice versa.
@SergioEduP
@SergioEduP Жыл бұрын
​@PeachCrusher69 That is an interesting way of explaining it, I still don't quite grasp the concept of a particle not having a defined state on creation, but that helps me understand it a bit better, once the particle interacts with another one it's state has to be defined otherwise their interaction would just not happen, and the entagled particle has to be reversed in order to maintain the energy equal to the original superposed state.
@theawecat27
@theawecat27 Жыл бұрын
oh my goodness! i had just identified a picture on inaturalist the other day of that jellyfish which apparently only lives here in the pnw. and now i learn it's where that glow protein comes from in this video! that's so cool, and weird, it's not like i'm regularly thinking about jellyfish, that was the only one recently. i'm finding the world works in mysterious ways. quantum mechanics in general is also kind of scary and weird and cool, thanks for explaining some! i knew particles could be entangled but didn't know specific ways it actually could happen.
@rikademoss6535
@rikademoss6535 Жыл бұрын
Very cool video! I had a lot of fun watching this and learning about Quantum Mechanics 🐠🐦🐱
@notjerrett
@notjerrett Жыл бұрын
Another wonderful video!
@tlm2096
@tlm2096 Жыл бұрын
Keep up the great work man!
@Scardpelt
@Scardpelt Жыл бұрын
Do you not understand how soul crushing this video is??? My soul, my everything was dedicated to creating a quantum computer that uses olive oil. Every day I toil in the mines creating olive oil and growing the silicone to create the supercomputer. What will do now?
@factficcion4798
@factficcion4798 Жыл бұрын
The first time I’m seeing these concepts demonstrated so intuitively
@petribalanceisnice
@petribalanceisnice Жыл бұрын
I am physics teacher in high school and i often show your videos to my students, you are doing great :) Keep it up!
@jay_sunday
@jay_sunday Жыл бұрын
Hell yeah, bro got a Brilliant sponsorship.
@nicolasbessone2559
@nicolasbessone2559 Жыл бұрын
your videos are great, my eyes will appreciate a dark theme.
@andrew-ub4ku
@andrew-ub4ku Жыл бұрын
Excellent video, this channel is awesome
@GirusBetterThanVirus
@GirusBetterThanVirus Жыл бұрын
This channel is amazing, the way you explained quantum mechanics was great. I am doing a school project( I am in 8th grade) about quantum internet. and the information you explained helped my project so much. Your explanation on SPDC is great! Because of you I learned so many new things! My project is 10 times better because of your video! Thank you for your amazing videos!
@physicsforthebirds
@physicsforthebirds Жыл бұрын
Awesome! Let me know how the project goes!
@GirusBetterThanVirus
@GirusBetterThanVirus Жыл бұрын
@@physicsforthebirds Yes I will, I will present it on may 9th (my birthday)! I REALLY want to send you the link to it (it is a google site) but I also don't want the entire comments to get the link to my website. If I knew being a bird meant getting these types of videos about physics before, I would have became a bird earlier! Also I have put you in the citations and in the special thanks!
@aileenyx
@aileenyx Жыл бұрын
​@@GirusBetterThanVirusHow did it go? :D
@GirusBetterThanVirus
@GirusBetterThanVirus 8 ай бұрын
@@aileenyxit went great
@echo5172
@echo5172 Жыл бұрын
8:05 I swear ive been to this exact sprouts...
@mistypig
@mistypig Жыл бұрын
It’s time like this that I’m glad to have read the Rascal does not Dream series for its tackling of quantum mechanics
@rutger4131
@rutger4131 10 ай бұрын
Cool video A little warning about the laser: 30 mW is enough to fry your retina. Use a class II instead and / or some laser goggles that block green (you should still be able to see the red). Also be aware that many cheaper 'safe' class II green lasers omit the IR filter and may be putting out quite a few additional mW of IR that you can't see.
@Ozy-RP
@Ozy-RP 11 ай бұрын
I like thouse Videos and i always Watch them. Today i was learning quantum mechanics in german for my Uni and had some Problems. To procastinate i started to Watch some KZbin. And this Video is the second I Watch. Well now i understand them a Bit More.
@agargamer6759
@agargamer6759 Жыл бұрын
Good stuff!
@EPMTUNES
@EPMTUNES Жыл бұрын
You have a gift to teach disparate physical and natural phenomena in such an intuitive way.
@jacobcrowley8207
@jacobcrowley8207 Жыл бұрын
Very cool jellyfish. Thank you, jellyfish.
@erikh8685
@erikh8685 Жыл бұрын
Love this channel
@Baskdevil
@Baskdevil Жыл бұрын
Hey I love your videos!! Would it be possible for you to make videos on not such a white background. I usually watch videos at night or in dark rooms and the white background really pops out. Cheers ❤
@shift-happens
@shift-happens Жыл бұрын
amazing video
@Mr._Wizard
@Mr._Wizard Жыл бұрын
Do you have a patreon or somewhere to support you? This has quickly become some of my favorite content on KZbin. I got my bachelor's in physics and work in a related field. Yet this has been the most stimulating engagement I've had with these big concepts since college. It scratches an itch I had missed so bad. I've not found other KZbin channels that meet that need, so please know how appreciated this is!
@physicsforthebirds
@physicsforthebirds Жыл бұрын
It makes me happy that you're enjoying the videos! I'm actually working on putting together some treats for patrons before launching a patreon, but it should be up very soon!
@fitz3540
@fitz3540 Жыл бұрын
Idk if it was your explanation being extremely well done and simplified, or if it's just bad, but I think I've come to the realization that Quantum Mechanics is a stupid semantics game. Entanglement sounds like you broke a cookie in half and tossed them in the air, and then said "You don't know which side is the up or down until they land! And they're going to fit together mysteriously!" Yeah, of course they're going to be opposites of each other, you just broke them in half. They fit together. Why is this a surprise? It's all semantics and sophistry.
@TheJunky228
@TheJunky228 Жыл бұрын
I think of it more like when the entangled photons are emitted, they each have opposite polarizations, and are both already in whichever state that they are in when one gets measured (and then let's you know the other is opposite). They 'know' exactly which state they should be in ever since they were emitted. we just have no way to determine which state they're in until measuring them. so they're in a superposition only as far as our knowledge of them is concerned. in actuality they've always been in the 'collapsed' waveform state the entire time. there is no need for instantaneous information transfer upon viewing one to determine the other like, imagine two sisters were going to an event and wanted to wear different color dresses... you know that they coordinated before leaving that one would be wearing red, the other blue. what you don't know is exactly which sister is wearing red and which will be wearing blue, you just know that those are the options. (the sisters are in a superposition of either wearing red or blue). when you arrive at the event, you say hi to one of the sisters, noticing that she is wearing red (the superposition waveform has collapsed) so you can intuit that the other must be wearing blue, and sure enough you see her later and see that she did wear blue. this doesn't mean that the sisters were each "maybe wearing red, maybe wearing blue" No, they decided before going out who would wear which color, they just didn't tell you about it. so to your perspective, you had no clue until you finally saw one of them later. sister 1 was always going to be wearing the red, and sister 2 always the blue. you just had no way of knowing until you saw for yourself. if information was transmitted upon 'measuring', then that would mean that when you saw the first sister in red at the event, she turns around and calls the second sister to tell her to change into her blue dress right then and there. that wouldn't make any sense.
@lunkel8108
@lunkel8108 Жыл бұрын
Look up bell's theorem. You are postulating a hidden variable theory, which is impossible if you also want the theory to be local.
@jacobf6945
@jacobf6945 Жыл бұрын
Saw an upload, I click.
@Turbolemons
@Turbolemons Жыл бұрын
This man just explained quantum computers to me in less time than it takes to take a shit and I respect that
@donnalambs9578
@donnalambs9578 Жыл бұрын
Probably shit faster without the phone
@blue5659
@blue5659 Жыл бұрын
Galium arsenide phosphide can be adjusted to have diode potwntials from near ir to green. Which is why blue led got a nobel. Is it possible to use 4 wave mixing on blue/uv of the sun, so that solar panels can be made from just ga asx p1-x ? Or that spontaious parametric thingy. So long as blue and uv can become green yellow red or near ir. Because SiC based blue is not efficient for photon absorption or emission
@omsingharjit
@omsingharjit Жыл бұрын
1st can we DO this at home 2nd will this same non-liner bbo do both Up and down Conversation like if we sine higher wavelength from other side wil it also Combine to higher frequencies?!
@whit38
@whit38 Жыл бұрын
i’ve been to that sprouts
@jonathanettinger3104
@jonathanettinger3104 Жыл бұрын
For the polarized glasses example, wouldnt it make more sense to say that the photon that was blocked does "know" when its measured by the glasses but the one that isnt doesnt until it reaches your eyeball ?
@tallyshay217
@tallyshay217 Жыл бұрын
I dont really understand any of this but you describe it so simply i feel like i almost can.
@Tyletoful
@Tyletoful Жыл бұрын
Great video! Also, we live nearby each other haha! Kind of neat, I wish I knew more people that were into physics nearby. Oh well, glad to know there are others haha.
@karlosfy
@karlosfy Жыл бұрын
The level of this channel is insane.
@covirtcat786
@covirtcat786 Жыл бұрын
This video is the perfect example of molecular bioengineering. I am going to use it now when people ask me what it is.
@realMarleyMarrow
@realMarleyMarrow Жыл бұрын
This is a really interesting concept! But, your audio seems very quiet. I'm not sure if it's just me but it would be something to look into.
@mason3358
@mason3358 Жыл бұрын
I have a question for anyone that is able to understand this. Before explaining spontaneous four-wave mixing (11:11) he showed how a particle might move between energy levels. But in the diagram he used heat to move from S2 to S1 but needed fluorescence to move from S1 to S0. Why is fluorescence need to return to ground state but not needed to move between other energy levels. Sorry this is long i just didnt know how to explain it shorter.
@miladeskandari7
@miladeskandari7 Жыл бұрын
Nice video
@LillianRyanUhl
@LillianRyanUhl Жыл бұрын
Well, technically,,,,, the probability (±density) function is actually the absolute value of the wavefunction squared :)
@assburgers3457
@assburgers3457 Жыл бұрын
The worlds first quantum computer video to feature the materials used to create entangled pairs
@padrickbeggs7071
@padrickbeggs7071 Жыл бұрын
I love your videos :)
@monster_madeline
@monster_madeline Жыл бұрын
great video! do you know the name of the music in the background during the intro?
@physicsforthebirds
@physicsforthebirds Жыл бұрын
All of the music I use is mine, made for the videos. I might release it all on its own at some point!
@monster_madeline
@monster_madeline Жыл бұрын
@@physicsforthebirds its great stuff! your video on jazz and entropy has been super informative for my composition work, the overlap between music and physics is super interesting :)
@Patrik2569
@Patrik2569 Жыл бұрын
Great video, watched it until the end. The only thing I must point out is that the music was sometimes way too loud and distracting. Maybe tune it down in the future.
@physicsforthebirds
@physicsforthebirds Жыл бұрын
Noted! I'll edit with a variety of audio setups next time.
@mr.l6332
@mr.l6332 Жыл бұрын
@@physicsforthebirds Just to provide another opinion: personally I thought the balancing was solid (music fading in and out appropriately for intro/outro segments)
@natemencken9871
@natemencken9871 Жыл бұрын
the goat posted
@Shindawg
@Shindawg Жыл бұрын
10:12 "or does it?" Vsauce music
@ozen.m8161
@ozen.m8161 Жыл бұрын
Yayyyyy new video 🎉
@mgostIH
@mgostIH Жыл бұрын
What if I drink the genetically modified quantum olive oil
@Linguae_Music
@Linguae_Music Жыл бұрын
The information that determines which state the system assumes upon observation(the term for interaction), is not encoded upon observation(interaction), but is encoded at the moment of entanglement. :D The information doesnt actually have to travel between the particles, it was already encoded in the past. This misunderstanding is very common... and it makes it seem like "magic"... but there is nothing magical happening xD So i must point it put to everyone >:3 (I'm looking at you, New Age Hippies!!!)
@Oscar4u69
@Oscar4u69 Жыл бұрын
exactly, this video is so wrong in so many ways
@AugustusDay
@AugustusDay Жыл бұрын
What's the name of the song you use in your intros?
@spencerharris7671
@spencerharris7671 Жыл бұрын
Another banger
@ughtoaster
@ughtoaster Жыл бұрын
I love this channel
@ughtoaster
@ughtoaster Жыл бұрын
keep making these absolute bangers bird man
@bennetttopper2155
@bennetttopper2155 Жыл бұрын
does this mean that true randomness exists within the wave function eg. o = particle w/0 spin P = particle w/+x spin N= particle w/-x spin o? = particle w/unknown spin o ---> P + N %50 chance after one observation that o? is P
@MrBarcode
@MrBarcode Жыл бұрын
One issue Ive always had with quantum physics is if we have to entangled photons people use language like "if we observe the spin of one the spin of another is forced to change." How do we know its being forced to change? How do we know it wasnt always in that spin position before observing and really by observing it we're taking a coin flip and saying it landed on heads after the reveal? NO ONE ever explains that its just taken for a fact of 'the quirks of quantum science'
@primenumberbuster404
@primenumberbuster404 Жыл бұрын
Yes there is literature dealing with that specific stuff. You have to read:- Bell's inequality EPR paradox.
@jacobshin4279
@jacobshin4279 Жыл бұрын
1. Q: The entangled particles decides its spin right after it gets split, not at measurement!!! It's just that the spin is unknown. Short Answer: The above statement is MISLEADING at best and might even be WRONG. 2. Q: What is a measurement, really? Isn't it just when an interaction occurs with an external particle or force? Does it have anything to do with consciousness. Short Answer: Physicists don't know what a measurement really is. And no, an interaction is not the same thing as a measurement. A measurement probably doesn't need a concious being. 3. Q: Isn't this just an overly complicated version of when we have a ball hidden underneath 2 cups and we don't know which cup it's under until we "measure" by lifting one of the cups? Short Answer: No. 4. Does it really matter whether the particle gets its spin right after entanglement or if it gets its spin only after measuring? Isn't this just bad philosophy by physicists to make things seem more complex or a matter of annoying semantics? Short answer: Yes! It matters. They are fundamentally different things! It's not just physicists trying to seem smart or being pedantic. LONG ANSWER: Physicists don't fully understands what a wave collapse is or what a measurement is! That being said, there are a few good and not so good perspectives and ways to interpret QM (Quantum Mechanics): 1. Realist (aka Local Hidden Variable Theory): The quantum system is just like a ball underneath some cups. The ball already has a determined cup its under. We just don't know it until we measure it. There must be a hidden state or a hidden variable that somehow describes what state the ball is in since the realists think the ball is already under a determined cup. QM must be incomplete since this hidden variable isn't anywhere in modern QM. 2. Orthodox (aka Copenhagen Interpretation): The quantum system is not like a ball under a cup. We don't know what spin the particle is in until we measure it. No one in the universe knows what cup the ball is under until we measure. God doesn't know what cup the ball is under. The ball doesn't know what cup its under. [Insert omniscient personification here] doesn't know what cup the ball is under until there is a measurement. We say the measurement causes the particle's wave function to collapse. The act of measuring "creates" the spin of the particle or forces the ball to be under one of the cups, but not before. 3. Agnostic: Bury your head in the sand and don't think about it cause it doesn't matter when the particle gets its spin, since after all either way we don't know until we measure. The difference between the realist and orthodox perspective is just semantics. 4. Other: More advanced or modern ways to explain measurements and wave function collapse. Examples might include non-local hidden variable or everett (many worlds) interpretations. Let me start by saying that any serious physicist will only consider the "Orthodox" or one of the "Other" interpretations. This video considers the Orthodox position, since this is the oldest (so it's stood the test of time and hasn't been proven wrong by experiments), it's what most students are taught, and it's also more conceptually simple compared to the "Other" interpretations. The Realist and Agnostic interpretations are unlikely to be true because of a something called Bell's Inequality. Bell's Inequality is a mathematical statement that is implied by realism. Physicists showed that if realism is true then that means Bell's Inequality is true. But the surprising result is that if Bell's Inequality is true, then quantum mechanics is not just incomplete, but completely wrong. Many experiments have been performed and have shown that quantum mechanics is extremely accurate and have shown that bell's inequality is false, which basically means that realism is very unlikely to be true (in fact the most recent 2022 Nobel Prize was awarded to physicists who showed that Bell Inequality was violated or false). Since realism is probably wrong, then that means that there actually is a difference between orthodox and realism. So there really is a difference between the particle having a definite spin before measurement versus the particle having the definite spin only after measurement. Thus the agnostic position is wrong. There are real physical differences that can be found through experiments. So you can't bury your head in the sand like an agnostic believer. What is a measurement, really? Isn't it just when an interaction occurs with an external particle or force? A measurement is not just an external interaction. A particle that interacts with an external particle doesn't necessarily have to result in a measurement. In fact, Quantum computers work by manipulating particles in superposition using external fields/particles, but this doesn't result in any collapse in the wavefunction (so it's not a measurement). The particles in the quantum computer still retain a state which is a superposition. So not all external interactions are measurements. So you might ask what kind of interactions are measurements (i.e. causes the wave function to collapse). Again this is an unsolved problem in physics (google the measurement problem). But again there are a few good and some bad interpretations of what a measurement is: 1. A measurement is made when a macroscopic (classical) system interacts with a quantum particle/system or what a scientist does in a lab using classical tools like a ruler, stopwatch, spectrometer, etc. (Bohr) This is probably the simplest way to imagine what a measurement is and works pretty well for intro level QM. This is what the video defines a measurement as. 2. A measurement is when an irreversible process occurs, aka increase in entropy. 3. A measurement is made when a conscious being observes something (Wigner) 4. A measurement is made when a permanent record is made (Heisenberg) I think 1 and 2 are probably the best ways to think about what a measurement is. Most physicists don't think 3 is right since all known physical laws don't really care whether humans exist. All these perspectives have problems of course. Like for 1, what differentiates a macroscopic and quantum system? When does the transition occur. And for 4, what does "permanent" mean? * Footnote: Bell's Inequality only holds if particles affect each other slower than the speed of light. Some newer theories with hidden variables can work if the particles can influence each other at faster than light speeds (called non-local hidden variable theory). D.J. Griffiths and D.F. Schroeter, Introduction to Quantum Mechanics, 3rd ed. (Cambridge University Press, Cambridge, 2018). ^ for those with more math background, check out the proof of bell's inequality.
@cinnamoncat8950
@cinnamoncat8950 Жыл бұрын
something i still dont understand about quantum physics is why the particles are described as choosing their state when theyre interacted with instead of when they get entangled. Why would it be like that, how would you even be able to prove that they werent already in that state if you can only tell what state theyre in after you measure them
@skullcrushers1000
@skullcrushers1000 Жыл бұрын
Some fungi fluoresce green and orange in the presence of ultraviolet light, could this be quantum entanglement?
@kfor247
@kfor247 Жыл бұрын
Great Chanel! But Music way too loud!
@The-Anathema
@The-Anathema Жыл бұрын
I'm still curious what the meaningful distinction is between quantum superpositions and merely unknown positions. I "understand" (and by 'understand' I mean the cliffnotes version, I read and understood the wikipedia page) the technical definition, don't get me wrong. But if you throw a photon at some particle, that then splits that photon into two oppositely polarized photons of lesser energy, it doesn't seem intuitively obvious to me how you'd prove they're entangled and of indeterminate polarity until measured as opposed to simply unknown until measured. Say you measure photon a and learn its polarity, this then locks in the polarity of photon b, but this does not seem to, intuitively, result from the measurement of the photon -- rather we'd find the same to be true as well in the case where the photons had a fixed polarity at time of emission, and us learning the polarity of photon a lets us deduce the polarity of photon b since it is opposite. I suppose then that my specific question ought to be dictated as such: "How do we experimentally prove that two particles are entangled such that their properties are truly indeterminate until observed as opposed to already having said properties at time of emission, it would appear that quantum entangled particles would otherwise transmit information at a speed far greater than C which, as we understand it, ought not be possible. It seems impossible to me to collapse the wavefunction by observing the particle, and to then uncollapse it and re-observe it, so it seems like an, at best, fancy way of saying "the polarity is random and we don't know which", this however still means it had a definite state at time of emission irrespective of observation or not. That is to say, it seems to me the particles were always in a fixed but unknown state until time of observation, as opposed to the state being decided upon such a time and retroactively cascading to entangled particles irrespective of distance."
@PHR16384
@PHR16384 Жыл бұрын
"Interaction" is a miles-better term than "observation" -- it's both accurate and intuitive. Why do macro objects not exhibit quantum behaviour? Easy intuitive answer: nothing known could possibly stop every single one of zillions of particles (a Mole of water is only 18mL, btw) from interacting.
@creationfied
@creationfied Жыл бұрын
anybody knows the significance of saying the electron dont know where it is instead of saying we dont know where the electron is?
@LarrySiden
@LarrySiden Жыл бұрын
Photons don’t “decide” what state to be in. There is no volition or agency. In fact, some physicists say there is no photon at all until a “measurement” (an exchange of energy) occurs. The “photon” is the record of that exchange. We are not talking about tiny rubber balls that have physical spin our other properties, but pure energy that can be described by a wave function that gives a probability of it interacting with something at any given time and position. If we already accept that radiant energy is described by a field, not a point in dice and time, it’s doesn’t seem so strange anymore that a “photon “ can appear to tunnel through a solid barrier. Nonetheless, there’s is still a mystery. How can a wave function collapse everywhere all at once, with no regard for special relativity? (It collapses instantly for all observers regardless of inertial frame). My takeaway is that photons themselves are really just the trace we see of energy interactions.
@Henrix1998
@Henrix1998 Жыл бұрын
4:08 how do we know the photon doesn't know its polarity?
@TesserId
@TesserId Жыл бұрын
Upvoted for not leading us on until the end of the vid.
@Gojarino
@Gojarino Жыл бұрын
I like this channel
The Double Bubble Theorem
11:51
Physics for the Birds
Рет қаралды 178 М.
James Webb Space Telescope and the Traveling Salesman Problem
10:48
Physics for the Birds
Рет қаралды 243 М.
OMG🤪 #tiktok #shorts #potapova_blog
00:50
Potapova_blog
Рет қаралды 17 МЛН
Мы никогда не были так напуганы!
00:15
Аришнев
Рет қаралды 4,4 МЛН
Luck Decides My Future Again 🍀🍀🍀 #katebrush #shorts
00:19
Kate Brush
Рет қаралды 8 МЛН
The joker's house has been invaded by a pseudo-human#joker #shorts
00:39
Untitled Joker
Рет қаралды 14 МЛН
How Quantum Computers Break The Internet... Starting Now
24:29
Veritasium
Рет қаралды 9 МЛН
Why do humans like jazz? (evolution of music, entropy, and physics of neurons)
17:48
The Problem with Wind Energy
16:47
Real Engineering
Рет қаралды 1 МЛН
The Topological Problem with Voting
10:48
Physics for the Birds
Рет қаралды 187 М.
What do LEGO bricks and celestial bodies have in common?
13:12
Physics for the Birds
Рет қаралды 185 М.
Random Rhombus Tilings
7:32
Physics for the Birds
Рет қаралды 143 М.
Bell's Theorem: The Quantum Venn Diagram Paradox
17:35
minutephysics
Рет қаралды 8 МЛН
Why The First Computers Were Made Out Of Light Bulbs
18:56
Veritasium
Рет қаралды 5 МЛН
So, space isn't a 4D Pringle... Maybe a donut?
13:25
Physics for the Birds
Рет қаралды 144 М.
OMG🤪 #tiktok #shorts #potapova_blog
00:50
Potapova_blog
Рет қаралды 17 МЛН