Can you find the Radius of the circle? | (Triangle inscribed in a circle) |

  Рет қаралды 393,527

PreMath

PreMath

Күн бұрын

Пікірлер: 219
@bigm383
@bigm383 11 ай бұрын
Great work, Professor!❤😀
@PreMath
@PreMath 11 ай бұрын
Thank you so much! 😃❤️
@RenuBala-wu5qe
@RenuBala-wu5qe 4 ай бұрын
No it's its hard work To do smart work use properties of circle and chord Answer expected to come within 6-7 calculations
@BenFranklin1776
@BenFranklin1776 10 ай бұрын
Pick any angle in the trianle to be theta. Lets say oppose of 15. Law of cosine: Cos(theta) = (13^2 + 14^2 - 15^2) / (2*13*14) = 5/13 Sin^2 + cos^2 = 1, so sin(theta) = 12/13 (You can note here we are getting the 5,12,13 triangle you had) Extended law of sines says 2R = a/sin, so 2R = 15/sin(theta) R = 1/2 * 15/(12/13) = (13*15) / (2*12) = 65/8
@wackojacko3962
@wackojacko3962 11 ай бұрын
Area of triangle can be found using Heron's Formula. Then (13 × 15 × 14) ÷ (4 × Area) = R. 🙂
@PreMath
@PreMath 11 ай бұрын
True! Thanks ❤️🌹
@sr2291
@sr2291 10 ай бұрын
Why does that work?
@venkateshwarlujanga9653
@venkateshwarlujanga9653 10 ай бұрын
Properties of Triangles Area of triangle (Δ)= abc/4R where R is circumradius ​@@sr2291
@JanPBtest
@JanPBtest 10 ай бұрын
@@sr2291 The radius of the circumcircle equals abc/(4*area). For proof, see Wikipedia for "Law of sines".
@sr2291
@sr2291 10 ай бұрын
@@JanPBtest That's really cool. Thanks.
@ybodoN
@ybodoN 11 ай бұрын
Easy solution: Heron's formula gives the area of the triangle.Then the radius of the circle is abc / 4A.
@Abby-hi4sf
@Abby-hi4sf 11 ай бұрын
Will you elaborate it please
@ybodoN
@ybodoN 11 ай бұрын
@@Abby-hi4sf The second formula follows from the law of sines: a / sin α = b / sin β = c / sin ɣ = abc / 2A = 2R. So, A = √(21 (21 − 13)(21 − 14)(21 − 15)) = √7056 = 84. Then R = (13)(14)(15) / ((4)(84)) = 2730 / 336 = 65 / 8.
@PreMath
@PreMath 11 ай бұрын
Great! Thanks ❤️🌹
@evbdevy352
@evbdevy352 2 ай бұрын
That's the short way.I think so❤
@harrymatabal8448
@harrymatabal8448 5 ай бұрын
Excellent work. Thanks
@ΟμηροςΝεοφυτιδης
@ΟμηροςΝεοφυτιδης 8 ай бұрын
Cosine rule to find one angle then doing sine rule =2R and you find R
@suryanarayanabadithamani7686
@suryanarayanabadithamani7686 25 күн бұрын
Well explained!👌👌👌
@samueltso1291
@samueltso1291 15 күн бұрын
I used a much quicker method. By cosine rule on triangle CAB, angle CAB = 67.38 degrees. Based on angle properties of circle, angle COB = 2 x angle CAB = 134.76 degrees. Using cosine rule on triangle COB, OC or OB (radius of the circle) = 8.125. I worked out the answer within a minute.
@Fatjack-jy8gs
@Fatjack-jy8gs 10 ай бұрын
I did enjoy that. I have not done any Maths for far too long. I hardly know any of it any more.
@prossvay8744
@prossvay8744 11 ай бұрын
area of the triangle: A=√s(s-a)(s-b)(s-c) s=a+b+c/2=13+14+15/2 s=42/2=21 A=√21(21-13)(21-14)(21-15)=84 84=1/2(13)(15)sin(x) x=59.5 2x=2(59.5)=119 Cos(119)=r^2+r^2-14^2/2r^2 r=8.12 . 🙏❤❤
@Copernicusfreud
@Copernicusfreud 11 ай бұрын
That is how I did it.
@PreMath
@PreMath 11 ай бұрын
Super!!! Thanks ❤️🌹
@sudhangshubhattacharya4991
@sudhangshubhattacharya4991 8 ай бұрын
In brief the area of the square in circle to be found out then diagonal of that square will be the diameter of the circle and half of it will find the radius
@sudhangshubhattacharya4991
@sudhangshubhattacharya4991 8 ай бұрын
The one of the intelligent problems found in u tube videos
@jkevincolligan8317
@jkevincolligan8317 7 ай бұрын
⁠@@sudhangshubhattacharya4991 Great geometric problem !!😅😅😅
@prashant245100
@prashant245100 5 ай бұрын
Hello sir..I m from India..and watch your videos...I really like it and encourage others to watch
@parthtomar6987
@parthtomar6987 11 ай бұрын
Nice solution sir
@PreMath
@PreMath 11 ай бұрын
Thanks and welcome❤️🌹
@Abby-hi4sf
@Abby-hi4sf 11 ай бұрын
Excelent explanation
@PreMath
@PreMath 11 ай бұрын
Glad you liked it❤️ Thanks ❤️🌹
@giuseppemalaguti435
@giuseppemalaguti435 11 ай бұрын
R=ABC/4S...S=(Erone)=4*3*7=84...R=65/8
@PreMath
@PreMath 11 ай бұрын
Wow! Thanks ❤️🌹
@tombufford136
@tombufford136 9 ай бұрын
At a quick glance: The centroid of the triangle and the three medians are coincident. where h is the height. X1 and Y1 are the x and y coordinates from A of the Centroid. X1 = 14/2 = 7. Y1 = h/3. AD =x . r^2=7^2+h^2/9 , x^2+h^2=169 and h^2=225-(14-x)^2. R^2=49+(169-x^2)/9. h^2=29-28x-x^2. h^2=169-x^2 then 140-28x=0 and x=5. Then h = 12 and the radius = SQRT(49+ 144/9)=8.1
@ajeethpandey
@ajeethpandey 5 ай бұрын
R=a.b.c/4.∆ which gives R=65/8
@riccardobaiocco9766
@riccardobaiocco9766 8 ай бұрын
Very clear. You are a very good teacher
@suyogbakliwal11
@suyogbakliwal11 11 ай бұрын
We know that 🔼 = abc / 4R, Where 🔼 is the Area of Triangle ABC, a,b,c are the sides of the triangle, and R is the circumradius of the circle. The area of a triangle can be found using Heron's formula. and we can find R consequently
@chintamanisatyamurthy5342
@chintamanisatyamurthy5342 10 ай бұрын
Very well explained. Though different methods r also there, the way u explained in ur own method is superb.
@quabledistocficklepo3597
@quabledistocficklepo3597 8 ай бұрын
So what? I knew that,. but how would that
@mathematicsbyraunaksir9778
@mathematicsbyraunaksir9778 11 ай бұрын
We can solve it by using formula a*b*c/4*area of triangle 13*14*15/4*84
@PreMath
@PreMath 11 ай бұрын
Sure! Thanks ❤️🌹
@mathematicsbyraunaksir9778
@mathematicsbyraunaksir9778 4 ай бұрын
Always helpful videos thanks for doing it ​@@PreMath
@Marco-AurelioHernandez
@Marco-AurelioHernandez 9 ай бұрын
I used the Rule of Cosines to find the angles. Let a = 13, b = 14, c = 15. So angle A = 53.1, B = 59.5, C = 67.4. Then for the circumcircle radius R, I used the Rule of Sines with any side: a/sin A = 2R. Thus, 13/2(0.799)) = 8.13
@shirish11
@shirish11 10 ай бұрын
Join OA and OB. OA= OB = R. Angle AOB = twice of angle ACB. Using cosine law for triangle ABC, we can find cos C. From here, find cos 2C , that is , cos AOB. Now again use cosine law for triangle AOB to find R.
@rangaswamyks8287
@rangaswamyks8287 6 ай бұрын
GREAT WORK PROFESSOR.. YOU ARE MY FAVOURITE MATHS GURUJEE AFTER A LONG TIME IAM WATCHING YOUR VIDEOS.. BLESS ME SIR.
@UNFORGIVEN1821
@UNFORGIVEN1821 5 ай бұрын
A simpler solution is to proportionally find the arc to the length of each side of the triangle that is proportional. Then the correspondence in degrees of each unit of length taking into account the 360 ​​degrees of the circle. Finally you find the length that corresponds to 180 degrees, this is the diameter of the circle and dividing by two you find the radius.
@mathewpv681
@mathewpv681 5 ай бұрын
We can find the area of the triangle by herons theorem. Since area is half x base x altitude, we can find an altitude. From altitude and a side we can find the sine of the included(base and side) angle. Then we can use the formula, 2R=a/sine(A) to find the radius. With a lttle effort, since the values of the sides given are simple, we can do the calculation mentally.
@alokranjan4149
@alokranjan4149 3 ай бұрын
Beautiful solution , without using the heron's formula & R = abc/ area
@geometer6121
@geometer6121 11 ай бұрын
Great work for instructional purposes, but it would be much easier to use the formula of the circumradious: R = ABC / 4[area of triangle]. In this case: R =(13)(14)(15) / 4[84] = 2,730 / 336 = 8.125
@Salman_Zahur
@Salman_Zahur 7 ай бұрын
How did you derive the measure 84?
@falomasbu
@falomasbu 4 ай бұрын
How about using Euclidean concepts, instead....constr OB=OA, then first angle ACB by cosine rule. Then AOB will be twice ACB. Repeat step above and find AOB, the radius
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq 6 ай бұрын
We may join OA OB OC The large triangle will be splitted into three small isosceles triangles Each of these three isosceles triangles area may be computed with the help of radius and each of the sides. Then their sum will be with one unknown that is radius. This sum is equal to the area of the big triangle. The area of the big triangle may be computed by Heron's theorem of 🔺. Then we may form an equation from which we may get the RADIUS. Thanks for ur solution.
@murvetaykac7041
@murvetaykac7041 6 ай бұрын
We can use the tringles area formula.The first formula is S=a.b.c/4R and second is S=(u.(u-a).(u-b).(u-c)^1/2 .We find the result useing thees formulas.R=65/8 thank you very much.
@phidesx6099
@phidesx6099 10 ай бұрын
Extended law of sines: (1) a / sin α = b / sin β = c / sin γ = abc / 2A = 2R, where A = area of the triangle, R = radius of the circumscribed circle Heron's formula: (2) Area of the triangle: A = square root of p(p - a)(p - b)(p - c), where p = semiperimeter of the triangle p = (13 + 14 + 15) / 2 = 21 A = square root of 21(21 - 13)(21 - 14)(21 - 15) = 84 From (1) : abc / 2A = 2R -> R = abc / 4A = 13 x 14 x 15 / 4 / 84 = 8.125
@KipIngram
@KipIngram Ай бұрын
Sure - no problem. The half-perimeter of the triangle is 21. So the area of the triangle is (by Heron's formula) area = sqrt(21*(21-13)*(21-14)*(21-15)) = 84 This has to be equal to 0.5*base*height = 7*height, so height = 12 Now we can figure out the angle C; it's C = arccos(12/13) + arccos(12/15) = 59.4898 degrees Now by the law of sines the diameter is diameter = 14 / sin(59.4898) = 16.25 So the radius is 8.125.
@alexcwagner
@alexcwagner 8 ай бұрын
I'm not claiming my way is the best way, but I had to work with what I could remember. I know that angle AOB is double the angle of ACB, and that the perpendicular bisector of AB passes through O. So, I considered the right triangle A-mid(A,B)-O, where A-mid(A,B) is 7, AO is r, and the angle at O is gamma (where gamma is the angle at C). So, from that triangle, we get r = 7/sin(gamma), and from the big triangle, we can use the law of cosines to get 14^2 = 13^2 + 15^2 - 2(13)(15)cos(gamma), which yields cos(gamma) = 33/65. From cos(gamma) we can derive sin(gamma) = 56/65, so r = 7/(56/65) = 65/8 or 8.125.
@Ibrahimfamilyvlog2097l
@Ibrahimfamilyvlog2097l 11 ай бұрын
Great work sar❤❤❤❤
@PreMath
@PreMath 11 ай бұрын
Thanks a lot ❤️
@BalaSribhaskarImmidi
@BalaSribhaskarImmidi 7 ай бұрын
Nice explanation but we could use herons formula and area of triangle is equal to abc /4R to find the circumradius
@dhrubajyotidaityari9240
@dhrubajyotidaityari9240 11 ай бұрын
∆ =84 R=abc/4∆=13.14.15/4.84 =65/8 sq units
@PreMath
@PreMath 11 ай бұрын
Thanks ❤️🌹
@STEAMerBear
@STEAMerBear 7 ай бұрын
So we need to find the circumcenter. That’s the concurrent point where the perpendicular bisectors meet. All the vertices fall on the inscribing circle from that point, so they are equidistant from it as well as radii of the circle. So the distance from the circumcenter to a vertex is r. r =(abc)/sqrt((a+b+c)(b+c−a)(c+a−b)(a+b−c)) =8.125
@dawit-y7s
@dawit-y7s 2 ай бұрын
Thanks mr.
@edwardwestenberger1890
@edwardwestenberger1890 7 ай бұрын
I have been working on a (carpentry) problem (on and off) for about a month. My solutions have been: 1. An iterative solution using newton's method 2. A forth order equation using Sin(theta) as the variable: it creates 3 extraneous roots in addition to the desired solution. 3. A forth order equation that uses Cos(theta) as the variable... same problem as above. 4. A forth order equation using Tan(theta) as the variable... Same problem The basic equation is: A = B / Cos(theta) + C * Sin(theta) where A, B & C are to be treated as constants and theta is the variable to be solved for. I hope this is the right forum, can you help me?
@extremovolador
@extremovolador 5 ай бұрын
Sorry, I had a mistake, the answer is A=B/{sqrt(1+C^2))[(1/sqrt(1+C^2))*cos(theta)+(C/sqrt(1+C^2))Sin(theta))}->A=B/[Sqrt(1+C^2)*Cos(phi+theta)], Cos(phi)=1/Sqrt(1+C^2), Sin(phi)=C/Sqrt(1+C^2), or phi=Arctan(C), therefore Cos(phi+theta)=B/[A*Sqrt(1+C^2)]->theta=ArcCos(B/[A*Sqrt(1+C^2)])-phi
@murdock5537
@murdock5537 11 ай бұрын
Nice! ∆ ABC → AB = 14 = AR + BR = 7 + 7; AO = BO = r → sin⁡(ARO) = 1; BC = 15; AC = 13; BCA = δ = ROA 198 = 394 - 2(13)(15)cos⁡(δ) → cos⁡(δ) = 33/65 → sin⁡(δ) = √(1 - cos^2(δ)) = 56/65 = AR/r = 7/r → r = 65/8
@PreMath
@PreMath 11 ай бұрын
Great job! Thanks ❤️🌹
@shivachaturvedhi8840
@shivachaturvedhi8840 8 ай бұрын
answer short cut formulka: fatorize ->term1: (6.5+7.5)^2-(7^2) = 7^2 * 3 -> term23: (7^2)-(7.5-6.5)^2 = 48 = 4^2*3 sqrt of product of above two terms: sqrt ( 7^2 * 3^2 * 4^2) = 3*4*7 next calculate : 2* 13*14*15 / (3*4*7) = 65 so answer is 65/8 = 8.125 Explanation: term1 = (b+c)^2-a^2 Term2 = a^2-(b-c)^2 factors = sqrt(term1*term2) R = 1/8 * (2ABC/factors) FYIP, sides A,B,C, half sides a,b,c
@aljawad
@aljawad Ай бұрын
Whenever I see a problem that involves a circle, I proceed with the application of the equation of the circle ((diff in X)^2 + (diff in Y)^ = Radius^2). In this case I assumed point D was the original (0,0), and after finding the values of x and h, I proceeded to give points A, B and C horizontal and vertical coordinates, and applied the equation of the enclosed circle to arrive to the same value for the radius, plus a bonus was the original of the circle at point O. But in this case, there is a famous ratio: product of the sides/(4*area)!
@anildeshkar906
@anildeshkar906 10 ай бұрын
Will this solution hold good if 'O' is outside of triangle ABC?
@jarikosonen4079
@jarikosonen4079 9 ай бұрын
That seems interesting question...
@幕天席地-w9c
@幕天席地-w9c 11 ай бұрын
Cosine rule:15^2=13^2+14^2-2*13*14*cos(A), so cos(A)=5/13, sin(A)=12/13; Sine rule: a/sin(A)=2R, R is radius of circumscribed circle, so R=65/4
@강운이-l1p
@강운이-l1p 11 ай бұрын
2R = 65/4 so R = 65/8
@MKPoqdPDeamimzpygxDjg7sJY59
@MKPoqdPDeamimzpygxDjg7sJY59 7 ай бұрын
Someone explain why at 5:59 the triangle 12, 14, 15 is right is 144+196 is not 225.
@jeyaramkrishanth2988
@jeyaramkrishanth2988 2 ай бұрын
In triangle BCD , BD isn't equal to 14. BD is 14-X (which is 5) so BD is 9. Now 144+81=225
@hariprasadchakrala7900
@hariprasadchakrala7900 6 ай бұрын
🙂👌🏻🙏He followed the geometrical approach. Trigonometrical approach is different which is derived from geometrical approach for variable values 🎉here geometrical approach is appropriate I think to test the basic knowledge 🤔
@weipenglim7840
@weipenglim7840 7 ай бұрын
You can use cosine rule to solve for angle alpha
@ahmadesteitieh
@ahmadesteitieh 6 ай бұрын
Find the area of the triangle using half perimeter then deduce the length of the heght you drew and find the radius as you proceeded
@Aditya_196
@Aditya_196 11 ай бұрын
4:23 here u could have just set x² + h² = 13 get x and find out the answer i personally would prefer ur method cuz i really hate that herons formula
@prime423
@prime423 8 ай бұрын
13 and 15 are a giveaway for a9-12-15 and 5-12-13.Note 12 is the altitude. There is a well known formula for the circle given the area and sides of the triangle. A good mathlete could solve this in a minute or two. Like anything, being a good Mathlete takes time and lots of practice.Fortunately,there are many resources for mathletes.I could give the formula but lets see if anyone can discover it.Its not so easy.
@jimwinchester339
@jimwinchester339 8 ай бұрын
Didn't know Thale's formula. But the inscribed angles theorem doesn't seem right: as E approaches B, the angle CEB approaches a right angle.
@harikatragadda
@harikatragadda 11 ай бұрын
By Cosine rule in ∆ABC , Cos∠ABC = 3/5 Sin∠ABC = 4/5 Draw a line AD passing through the center O. ∆ACD is a Right triangle, with ∠ADC = ∠ABC Hence Sin∠ADC = 13/2R = 4/5 R = 65/8
@PreMath
@PreMath 11 ай бұрын
Great! Thanks ❤️🌹
@aaziz11
@aaziz11 8 ай бұрын
nicely explained
@ccdsah
@ccdsah 8 ай бұрын
S=p*R. S= area using Heron's formula. p= semiperimeter
@jacobcombs1106
@jacobcombs1106 10 ай бұрын
I solved it differently. I took each of the triangle sides over the sum of the sides multiplied by 360 to get their angles. 14 was 120° which is perfect. I then drew a triangle with angles 120/30/30 where one side was 14 and the other two sides were r. I then bisected it creating 2 equal 30/60/90 triangles with a side of 7 and a hypotenuse of r. I then used the relationship of 30/60/90 triangles where the side opposite the 60 is x√3 and the hypotenuse is 2x to solve. X=7/√3 therefore r=2×7/(√3)=14/(√3)=8.1
@MindPowerAsYourChildsCompass
@MindPowerAsYourChildsCompass 6 ай бұрын
If you calculate this, you get 8.0829. See my more long winded explanation above. Thanks
@michaelstahl1515
@michaelstahl1515 11 ай бұрын
I enjoyed your video. My suggestion is using the cosinus theorem for calculating angel alpha at point A . I got alpha nearly 67, 3 . After that I used a theorem for calculating the radius of the circle around the triangle . r = a / 2 * sin (alpha) = 15 / 2 * 0,92 = 8,125.
@thangnguyeninh6317
@thangnguyeninh6317 3 күн бұрын
use heron to cal the area, we have S=abc/4R, haizzz 60s
@BarrieHughes
@BarrieHughes 8 ай бұрын
Use cos rule to work out angle A. BOC is double that. Use cos rule again to get OC=R in triangle BOC😉
@VIKING-dl7wz
@VIKING-dl7wz 9 ай бұрын
CIRCUMRADIUS = multiplication of sides/ 4 times the area of triangle. 65/8
@orliestutorials581
@orliestutorials581 3 ай бұрын
R=a*b*c/sqrt((a+b+c)*(a+b-c)*(a+c-b)*(b+c-a))
@madaxeybuufis3085
@madaxeybuufis3085 8 ай бұрын
Good job
@getahundesta6501
@getahundesta6501 4 ай бұрын
I want to buy the book .where can I get it? and what is its name?
@marcelowanderleycorreia8876
@marcelowanderleycorreia8876 11 ай бұрын
Many diferent forms to do. I used the heron formula in order to find the area of the triangle ABC and the proporcionaly of the chords in a circle, in order to find the radus.
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq 6 ай бұрын
Please elaborate
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq 6 ай бұрын
Please elaborate
@mathpro926
@mathpro926 7 ай бұрын
good explanation thank you teacher
@theoadieye
@theoadieye 10 ай бұрын
nice explanation thank you
@mathbynisharsir5586
@mathbynisharsir5586 11 ай бұрын
Excellent presentation sir
@PreMath
@PreMath 11 ай бұрын
Thanks dear ❤️🌹
@uwelinzbauer3973
@uwelinzbauer3973 11 ай бұрын
My idea was: the perpendicular lines through the mids of the sides of a triangle intersect in the center point of the outer circle. To find the radius of the circle, I used the cosine and the sine rules. Luckily I found that same correct solution in the end 😅 Nice challenge, a little hard to work out, but challenges make us 💪 😀 Greetings!
@Salman_Zahur
@Salman_Zahur 7 ай бұрын
Hello Dr Tahir
@samsheerparambil
@samsheerparambil 11 ай бұрын
By combining sine law and area of triangle we can say R=abc/4*Area hope this helps. Area= square root of s(s-a)(s-b)(s-c)
@_dr.mayhem
@_dr.mayhem Ай бұрын
This video shouldn't be longer than 1 minute, use Heron's formula for area, then substitute values of side and area into area formula for triangle using circumradius, Which is, Area= (axbxc)/4r.
@kkulkulkan5472
@kkulkulkan5472 10 ай бұрын
Used trig to solve it (cosine and then sine law) which in hindsight wasn’t necessary.
@sesa2910
@sesa2910 8 ай бұрын
You just found the diameter. To get the radius you must devide the diameter by 2. Thanks
@wasimahmad-t6c
@wasimahmad-t6c 4 ай бұрын
Full area 207.3942 & tenagale area 15×11.2=168÷2 =84
@TheEulerID
@TheEulerID 10 ай бұрын
My method was a bit different. I set the co-ordinates of A as 0,0 and B as 14,0 (note, that I can do that as the whole figure can be rotated if necessary to make the line A-B to be horizontal, even if the drawing isn't to scale). I then worked out the perpendicular height of the triangle from the AB baseline to C to be 12 using Pythagoras on the two right angles with one shared side. That also gives the x co-ordinate of the vertical line to be 5. Thus the co-ordinate of C is 5,12. If we take the generalised formula for a circle, x^2 + y^2 + 2gx + 2fy + c = 0, then we can see as the circle passes through point A (0,0) then c=0. Thus we have x^2 + y^2 + 2gx + 2fy = 0. Now plug in the co-ordinates of point B (14,0) and we get 196 + 14x = 0, therefore x = -7. That means the equation for our circle is x^2 + y^2 - 14x + fy = 0. Plug in the co-ordinates for point C (5,12) and we get 25 + 144 - 70 + 24f. Re-arrange and you get 24f = 99, thus f = -33/8. We now have a circle centred at 7,33/8 which passes through 0,0. The radius is sqrt(g^2 + f^2 - c), which is sqrt(49 + (33/8)^2), which works out at 65/8 or 8.125.
@kashifjamal5455
@kashifjamal5455 10 ай бұрын
R (radius of circumcircle)=abc/4∆ where ∆ is the area of triangle
@abdoomar554
@abdoomar554 10 ай бұрын
Use cose rule to get the angel. Next a'÷Sina =2r
@thetenniszone123
@thetenniszone123 11 ай бұрын
how do you approach such tough sums? when i see the solutions i understand the problem but have no clue how to start such problems. pls help
@michaelgarrow3239
@michaelgarrow3239 11 ай бұрын
Just keep watching. Pause at the beginning and try to think of an answer. 👍
@dickroadnight
@dickroadnight 11 ай бұрын
Just think what rules or theorems will get you from the dimensions you have to the answer you want. You can Google e.g “circle formulae”. I “has been” a draftsman - so I think how I could use the given info to draw it. In this case, you could use a compass to bisect the chords and find the centre.
@dongxuli9682
@dongxuli9682 10 ай бұрын
A triangle is fully defined by 3 side length; angles are fully defined by sides (law of cosines); length to sine of the opposite angle ratio is the diameter of its circumcircle. No trick is needed.
@hailelove1
@hailelove1 5 ай бұрын
You are amazing.want to say hi from Ethiopia
@User-jr7vf
@User-jr7vf 9 ай бұрын
There is a far quicker way of solving this, and I'm surprised nobody in the comments mentioned it.
@MaheshKumar-lx1ku
@MaheshKumar-lx1ku 9 ай бұрын
Please share 🙏
@User-jr7vf
@User-jr7vf 9 ай бұрын
@@MaheshKumar-lx1ku ok. First use the law of cosines to find the angle ACB. Now draw lines from O to A and from O to B, and note that these lines are the radii of the circle. There's a theorem (I forgot the name) which states that the angle AOB is twice the angle ACB. Then by using the law of cosines once more, you can find the radius.
@MaheshKumar-lx1ku
@MaheshKumar-lx1ku 8 ай бұрын
@@User-jr7vf thanks
@justarandomnerd3360
@justarandomnerd3360 7 ай бұрын
​@@User-jr7vfno trigonometry
@marcuscicero9587
@marcuscicero9587 9 ай бұрын
very nice
@ОльгаСоломашенко-ь6ы
@ОльгаСоломашенко-ь6ы 11 ай бұрын
Можно найти площадь треугольника по формуле Герона. R=a*b*c/(4*s)=8.125.
@PreMath
@PreMath 11 ай бұрын
Great! Many thanks ❤️🌹
@STEAMerBear
@STEAMerBear 7 ай бұрын
Спасибо! Это то, что я тоже сделал. Я удивлен, увидев так много людей, выполняющих слишком много работы. Хотя на вершину может быть много путей, ни одна полезная тропа не приведет нас к подножию горы! == translated from == Thank you! This is what I did too. I'm surprised to see so many people doing too much work. Although there may be many paths to the top, no useful path will lead us to the bottom of the mountain!
@ОльгаСоломашенко-ь6ы
@ОльгаСоломашенко-ь6ы 7 ай бұрын
@@STEAMerBear хочется решить не только правильно, но и быстро. Спасибо.
@CMTattoos
@CMTattoos 6 ай бұрын
why the radius is 65 divided by 8 ?it was divided by 4 ..on previous step ?
@CalvinLXVII
@CalvinLXVII 6 ай бұрын
Un ejercicio muy interesante! Saludos!
@miriamvianaesilva1118
@miriamvianaesilva1118 9 ай бұрын
Too remember. Thank you
@Imran-tc6sn
@Imran-tc6sn 7 ай бұрын
Thankyou sir
@hemantdikshit3008
@hemantdikshit3008 8 ай бұрын
Beyond words
@beaumatthews6411
@beaumatthews6411 8 ай бұрын
Very good video, but the constant uhs do really distract
@AmirgabYT2185
@AmirgabYT2185 9 ай бұрын
R=8,125
@misterenter-iz7rz
@misterenter-iz7rz 11 ай бұрын
area^2=21 6 7 8=84^2, area=84=1/2 13 15 (7/r), r=7 13 15 /(2 7 12)=(13 5)/(2 4)=65/8.😊
@PreMath
@PreMath 11 ай бұрын
Thanks ❤️🌹
@nalinweerasinghe8475
@nalinweerasinghe8475 10 ай бұрын
Brahmagupta's Formula (also known as Heron's equation) area of triangle ABC = S = sqrt (s(s-a)(s-b)(s-c)) where s = half-perimeter = (13+14+15)/2 = 21, a= 13, b=14 and c=15. so S = 84 We can also right S = abc/4R where R is the radius of a circle that inscribed triangle ABC. So R = (13 x 14 x 15) / (4 x 84) = 8.125 unit.
@MubarekHussien-xe4mm
@MubarekHussien-xe4mm 4 ай бұрын
Than you I like you
@mintusaren895
@mintusaren895 6 ай бұрын
R not mention by pai
@wasimahmad-t6c
@wasimahmad-t6c 4 ай бұрын
16.25÷2=8.125×8.125=66.015625×3.14159268=207.3942 full area sarcol
@GillesF31
@GillesF31 7 ай бұрын
I think we can get the radius value in 2 steps only (universal method). See below: ----- step #1 ----- ABC triangle area (HERON method): • half-perimeter: (13 + 14 + 15)/2 = 42/2 = 21 • area = √[21·(21 - 13)·(21 - 14)·(21 - 15)] = √(21·8·7·6) = √7056 = 84 ----- step #2 ----- Radius computation (circumscribed circle of a triangle): • formula: radius = (triangle_side_product)/(4·triangle_area) • R = (13·14·15)/(4·84) • R = 2730/336 -------------------- | R = 8.125 | -------------------- 🙂 Note: There is not enough place here to develop the formula >. Sorry!
@borutcigale778
@borutcigale778 7 ай бұрын
You totally overcomplicated it. You can just find one angle cosa=(b2+c2-a2)/2bc. Then find sine value of alpha and then devide a by sina. And then by tvo and you got radius. Very simple.
@rey-dq3nx
@rey-dq3nx 7 ай бұрын
So where’s your answer using your over simplistic approach? Ah, you know all the sines and cosines of all the angles by heart, I see!
@borutcigale778
@borutcigale778 7 ай бұрын
@@rey-dq3nx You don't need to calculate sine. When you get cosine you just use formula sinx=sqrt(1-(cosx)^2).
@arvindarkumar9473
@arvindarkumar9473 2 ай бұрын
.. very good solution And intresting 😊😊 ARVINDAR YADAV New Delhi.. India
@JSSTyger
@JSSTyger 11 ай бұрын
I believe r = 65/8. I tried this in my head so I could be way off.
@NikitaYadav-he1kc
@NikitaYadav-he1kc 5 ай бұрын
It's not Pythagoras theorem it is baudhayan theorem
@Jade-l4f3k
@Jade-l4f3k Ай бұрын
4 two iş 16-4) plus ten times (2!-1)
@pralhadraochavan5179
@pralhadraochavan5179 11 ай бұрын
Good morning sir
Ice Cream or Surprise Trip Around the World?
00:31
Hungry FAM
Рет қаралды 21 МЛН
The IMPOSSIBLE Puzzle..
00:55
Stokes Twins
Рет қаралды 171 МЛН
Viral question from China
8:04
MindYourDecisions
Рет қаралды 729 М.
Can you find the area of the yellow shaded region?
6:51
Maths_physicshub
Рет қаралды 3,5 М.
find the missing angle!!
10:34
Michael Penn
Рет қаралды 106 М.
Given a Circle Inscribed in a Triangle, Find the Radius of the Circle.
4:31
The SAT Question Everyone Got Wrong
18:25
Veritasium
Рет қаралды 14 МЛН
Ice Cream or Surprise Trip Around the World?
00:31
Hungry FAM
Рет қаралды 21 МЛН