I like your videos much because I always learn new theorems.
@PreMath Жыл бұрын
Glad to hear it! Thanks a lot ❤️
@Ibrahimfamilyvlog2097l Жыл бұрын
Nice sharing 🌹🌹
@PreMath Жыл бұрын
Thank you! Cheers! ❤️
@bigm383 Жыл бұрын
Fascinating!❤😀🥂
@PreMath Жыл бұрын
🌹 Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@HappyFamilyOnline Жыл бұрын
Great presentation 👍 Thank you so much for your hard work 😊
@PreMath Жыл бұрын
My pleasure 😊
@engralsaffar Жыл бұрын
y=360-2(2x-15)=390-4x In the equilateral triangle y+2a=180 Tangent is perpendicular to the radius x+a=90 2x+2a=180 Therefore, y=2x 2x=390-4x 6x=390 x=65 y=130
@PreMath Жыл бұрын
Excellent! ❤️ Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@murdock5537 Жыл бұрын
Nice! φ = 30°; OPQ = x + z = 3φ → z = OPB = PBO = 3φ - x → 2z = 6φ - 2x → y + 2z = 6φ = y + (6φ - 2x) → y - 2x = 0 → y/2 = x → BOP = y → BAP = y/2 → BAP + PCB = 6φ = y/2 + (2x - 15°) = x + 2x - 15° = → 3x = 6φ + 15° → x = (6φ + 15°)/3 = 2φ + 5° = 65°
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
Excellent! ❤️🌹 Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@arnavkange1487 Жыл бұрын
Can u give the proof for alternate segment theorem in next vedio ...as it is little bit confusing
@19-biswarooptalukdar99 Жыл бұрын
Yes... Please it is very much confusing....
@solcubing Жыл бұрын
I advise you to get a pen and paper so tracking the angles are easier. Let ΔABC be in a circle with centre O, such that A, B and C touch the circumference of this circle. The tangent DE passes through A on the circumference of the circle. AB is a chord where C lies on the major arc. By drawing OA and OB, two new radii are constructed (these lines go from the centre to the circumference of the circle so they are radii). This means that OA and DE are perpendicular (the tangent to a circle meets the radius of that point at 90°). As OA and OB are radii, ΔOAB is isosceles. This also means that angles OAB and OBA are equal; these should be labelled x. Draw the radius that is perpendicular to chord AB. Label the intersection point F (Note that FA=FB because a radius that is perpendicular to a chord bisects that chord). ΔOFA and ΔOFB are congruent, therefore, angles AOF and BOF are also the same; these should be labelled y. Since ΔOFA is a right angle triangle, x+y=90°. This means that angle FAD=y (90-x=y). Angle AOB=2y (because originally AOB was made up of angles AOF and BOF which equaled y+y). As the angle at the circumference is twice the angle at the centre, we can state that angle AOC is twice the size of angle ACB, so ACB=y, resulting in angle DAB=angle ACB. As AB is the chord, angle ACB is in the alternate segment to angle DAB and so angles in the alternate segment are equal.
@PreMath Жыл бұрын
Sure! Pretty soon. Thanks ❤️
@innovativeeducation5814 Жыл бұрын
a + x = 90 , (radius subtends 90 at point of contact of tangent) y + a + a = 180 ( angle sum proprty of triangle) y + 2a = 2 ( x + a ) ( from above two statements) y + 2a = 2x + 2a y = 2x x = y /2............ Hence Proved
@arnavkange1487 Жыл бұрын
Thanks solcubing and innotiveeducation for giving me the proof
@arnavkange1487 Жыл бұрын
This was an easy question ...
@PreMath Жыл бұрын
Great! ❤️
@romangarland47 Жыл бұрын
Could you guys please suggest me some pure mathematics book?
@misterenter-iz7rz Жыл бұрын
y=2x, x+2x-15=180, 3x=195, x=65, y=130.😊
@PreMath Жыл бұрын
Excellent! ❤️ Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@prossvay8744 Жыл бұрын
X=65, y=130
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@johnwindisch1956 Жыл бұрын
Great I came close just need to remember that 90-65 = 25. Not 15!