Let's assume that the area of the triangle AED is x, from which x/(x+14)=AD/AC=ED/BC=14/32, so x=98/9.
@1ClassicalMusicFan3 ай бұрын
Pause at 1:08. (I) “The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.” x/(x+14+32)=x/(x+46)=(AD/AC)^2. (2) "If two triangles share a height, then the ratio of their areas is equal to the ratio of their bases." Applying this to △EAD and △ECD, we get x/14=AD/CD, or x/(x+14)= AD/AC. Combine these 2 results and solve for x to get 18x=196 and x=98/9.
@michaeldoerr58103 ай бұрын
This is an example easier than it looks and this is probably why AA similarity is way more useful than it is given credit for!!!. I better use that for practice!!!
@SuryaSurya-jl5gfАй бұрын
∆DEC and ∆EBC share the same height, so DE/BC = 14/32 = 7/16. DE/BC = AD/AC = 7/16. AD/DC = 7/9. ∆ AED and ∆ DEC share the same height, so area of ∆ AED = 7/9 x area of ∆ DEC = (7/9) x 14 = 98/9.
@ParamitaBhattacharya3 ай бұрын
Please elaborate about the hight of triangle CDE
@santiagoarosam4303 ай бұрын
Sobre el triángulo EBC construimos el rectángulo EBCF de área 2*32=64→ Área CFD=32-14=18. Si decimos que EB=4→ BC=16 ; ED=7 y DF=9→ Razón de semejanza entre AED y CFD, s=7/9→ s²=49/81→ Área AED=s²*18 =882/81 =98/9 =10,88 cm². Gracias y un saludo cordial.
@NASIR58able3 ай бұрын
Very nice
@sadnanjuhib3 ай бұрын
❤❤
@sergioaiex39663 ай бұрын
Solution: Initially, let's dimension the figure: AE = a ED = n EB = b BC = m Blue Triangle A = ½ base × height 32 = ½ m b m = 64/b Yellow Triangle A = ½ base × height 14 = ½ n b n = 28/b The Pink Triangle AED is similar to the Larger Triangle ABC The ratio between the areas of similar triangles is equal to the square of the similarity ratio. In this case, the bases "n" and "m" are similar Area AED = S Area ABC = S + 46 (14 + 32) Area AED/Area ABC = n²/m² S/(S + 46) = (28/b)²/(64/b)² S/(S + 46) = (28/b/64/b)² S/(S + 46) = (28/64)² S/(S + 46) = (7/16)² S/(S + 46) = 49/256 256S = 49S + 2254 207S = 2254 S = 2254/207 (÷23) S = 98/9 cm² ✅ S ~= 10,889 cm² ✅
@alexundre87453 ай бұрын
Bom dia Mestre Essa eu acertei, fiquei feliz porque estou aprendendo Geometria com o Sr Grato
@PreMath3 ай бұрын
Excelente! Fico feliz em ouvir isso! Obrigado pelo feedback ❤️
@alexundre87453 ай бұрын
@@PreMath Muito obrigado pela instrução O Sr é um Homem de Bom ❤️
@RayCChoi-nj3gs3 ай бұрын
6:00, why h square over k square? thanks.
@ناصريناصر-س4ب3 ай бұрын
Because the ratio of the areas of two similar triangles equals the square of the similarity ratio.
@herolivesnu3 ай бұрын
Please can you prove this theorem you just stated here? I was about asking the same question that he asked. Let's not assert without proofs, please.
@herolivesnu3 ай бұрын
Thanks for stating the theorem. You are absolutely right, I have seen the proof of the theorem. Thank you so much for letting me know that
@marcelowanderleycorreia88763 ай бұрын
I spent several hours to solve this tricky puzzle... If I was doing a test, I'd never solve this... Congrats professor! 👍
@andrewlu89593 ай бұрын
x/14=(x+14)/32 => x =98/9
@Nerkar_073 ай бұрын
Can you teach..... hacsigun into the circle minus or circle into the hacsigun
@sergeyvinns9313 ай бұрын
RUSSIA! Рассмотрим трапецию BCDE, её площадь равна (ВС+DЕ)*BE/2=46. BC=BE=8, DE=a; (8+а)*8/2=46; а=7/2; АЕ=х; исходя из подобия треугольников AED и ABC, составляем пропорцию 7/2х=8/(8+х), откуда находим х=56/9; теперь находим площадь розового треугольника, А=56*7/9*2*2=98/9.
@quigonkenny3 ай бұрын
Extend ED up to F, where CF is parallel to EB. As CF and EB are parallel and FE and BC are parallel, and ∠FEB = ∠EBC = 90°, then CFEB is a rectangle. As EC is the diagonal of CFEB, then the area of CFEB is twice the area of ∆EBC, or 2(32) = 64 cm². As the area of ∆CDE is 14 and the area of ∆EBC is 32, the area of triangle ∆CFD = 64-(32+14) = 64-46 = 18. As ∠CFD = ∠AED = 90° and ∠FDC and ∠EDA are veryical angles and thus congruent, then ∆CFD and ∆AED are similar triangles. As ∆CFD is 18 cm² and ∆CDE is 14 cm², then the ratio of their bases FD to DE is 18/14 = 9/7, as the triangles have the same height. As ∆CFD and ∆AED are similar, the ratio of all their sides are the same, so the ratio of their areas equals the square of the ratio of their sides. A = (7/9)²18 A = 49(18)/81 = 98/9 = 10.8̅ cm²
@shesh98428269102 ай бұрын
Professor,I don't understand ∆CDE height because k is not perpendicular.
@phungpham17253 ай бұрын
It’s tricky but fun😅 1/ Label the area of the purple area as A We have 1/2 DExEB= 14 (1) 1/2 BCxEB=32. (2) -> (1)/(2)-> DE/BC=14/32=7/16 The purple triangle and ABC triangle are similar so, DE/BC=AE/AB=7/16 -> A/(A+46) = sq(7/16)=49/256 -> A=46x49/207= 10.89 sq cm😅😅😅
BC =16x DE = 7x AE =7 p AB= 16p BE =( 16-7)p=9p Area of 🔺 CBE = 1/2*BC*BE=1/2 *16x *9p = 32 sq units xp =32/72=4/9 Area of 🔺 ADE = 1/2*7x *7p =49xp/2 =49*4/9*2=98/9 sq units
@herolivesnu3 ай бұрын
Nice work, please how did you arrive at values(show formulas), BC? DE? AB? What does x and p mean in your solution?
@cyruschang19043 ай бұрын
xy = 28 xz = 64 y/z = 28/64 = 7/16 pink triangle is (7/16)^2 = 49/256 of the large triangle (14 + 32) cm^2 is 1 - (7/16)^2 = 207/256 of the large triangle pink triangle = 46 cm^2 (49/207) = (2254/207) cm^2 = (10 + 184/207) cm^2
@marcgriselhubert39153 ай бұрын
2.area of EDC = 28 = ED.EB and 2.area of EBC = BC.EB, so by division: ED/BC = 28/64 = 7/16 Triangles ADE and ACB are similar (same angles), so AE/AB = ED/BC = 7/16. Let's note AE = 7.k and AB = 16.k. Then by difference EB = 9.k 2.area of AED = AE.ED = 7.k.ED and 2.area of EDC = ED.EB = ED.9.k. So we have area of AED/ area of EDC = 7/9, and as area of EDC = 14, then we have that area of AED = (7/9).(14) = 98/9.
@nenetstree9143 ай бұрын
98/9
@wackojacko39623 ай бұрын
Beginning @ 8:30 , For some odd reason the dimensions of stuff change for me standing on the South Pole or the Equator. Just can't trust myself. Sometimes I'm exact but not so precise. Maybe if I did all my measurements on the 45th Parallel North or South everything would be okay. 🙂
@santiagoarosam4303 ай бұрын
Aunque más frío, yo me siento más aplomado en el círculo polar ártico.
@phungpham17253 ай бұрын
😊😊😊
@devondevon43663 ай бұрын
Answer 10.88888 round to 10.89 Different approach Let's label the length of the blue A and the height C Let's label the base of the yellow B and the height C (the same height as the blue) then BC = 28 and AC = 64 Equation 1 B/A = 7/16 (divide BC by AC) Hence, B = 7/16 A (multiply both sides by A). This is the base of the purple Let's label the base of the purple P Since the purple is similar to the large triangle, then (P+C)/A = P/7/16 A (P+ C) = P/7/16 (multiply both sides by A) 7/16 P + 7/16 C = P (cross multiply) 7/16 P + 7/16 C= 16/16 P ( 16/16P = P) 7/16 C = 9/16 P 7/16 * 16/9 * C = P 7/9 C = P This is the height of the purple Hence, the base and height of the purple in terms of A and C are 7/9 C and 7 /16 A Hence, the area of the purple in terms of A and C is 7/9 C * 7/16 A * 1/2 = 49/144 * 1/2 * AC = 49/ 288 AC But recall AC =64 (see equation 1) Hence, the area of the purple is 49/288 * 64 = 3136/288 3136/288 = 10.888888889
@Birol7313 ай бұрын
My way of solution ▶ A(ΔEBC)= 32 cm² A(ΔECD)= 14 cm² [EB]= a [BC]= b [DE]= c [AE]= d A(ΔEBC)= 32 cm² [EB]*[BC]/2 a*b/2= 32 ab= 64 A(ΔECD)= 14 cm² [DE]*[EB]/2 c*a/2= 14 ca= 28 Let's divide ab to da : ab/ca= 64/28 b/c= 16/7 b) ΔAED ~ ΔABC [AE]/[AB]= [DE]/[BC] d/(d+a)= c/b c/b= 7/16 ⇒ d/(d+a)= 7/16 16d= 7d+7a 9d= 7a d= 7a/9 c) [AB]= a+d d= 7a/9 [AB]= 7a/9 + a [AB]= 16a/9 ab= 64 (16a/9)*b= s ⇒ s= 64*(16/9)ab/ab s= 1024/9 A(ΔABC)= 1024/9/2 A(ΔABC)= 1024/18 cm² d) Apurple= A(ΔABC) - A(ΔEBC) - A(ΔECD) A(ΔEBC)= 32 cm² A(ΔECD)= 14 cm² ⇒ Apurple= 1024/18 - 32 - 14 Apurple= 98/9 cm² ✅
@LuisdeBritoCamacho3 ай бұрын
RESOLUTION PROPOSAL : 01) DE = b(ase) 02) BC = B(ase) 03) BE = h(eigth) 04) Trapezoid [BCDE] Area = (B + b) * (h/2) = 46 ; h*B + h*b = 92 05) b * h = 28 sq cm 06) B * h = 64 sq cm 07) h = 28/b and h = 64/B 08) 28/b = 64/B ; 28 * B = 64 * b ; 7B = 16b ; b = 7B/16 09) There are many infinite Solutions for this Equation : b = 7B/16 ; within the Variable Domain D = ]1 ; 14[ 10) Prime Factors of 28 = {2 ; 2 ; 7} 11) Prime Factors of 64 = {2 ; 2 ; 2 ; 2 ; 2 ; 2} 12) Then I saw that : 8 * 3,5 = 28. What's the right Solution? 13) Could it be (Possible Solution) BE = BC = 8 cm? And DE = 3,5 cm? I am not sure!! 14) Let's try. 15) 8/(8 + X) = 3,5/X ; 8X = 3,5 * (8 + X) ; 8X = 28 + 3,5X ; 4,5X = 28 ; X = 56/9 16) 2 * Purple Area = 35/10 * 36/9 = 1.260 / 90 = 126 / 9 = 14 17) PA = 14 / 2 ; PA = 7 Square Centimeters.
@georgebliss9643 ай бұрын
Triangle ABC is not defined uniquely. Let EB = BC = 8. Comparing blue & yellow triangle areas. 8 / 32 = DE / 14. ( same heights EB). DE = 3.5. Similar triangles ABC & AED. 8 / (AE + 8) = 3.5 / AE. Cross multiplying. 8AE = 3.5AE + 28. 4.5 AE = 28. AE = 28 / 4.5. Area of purple triangle. 1/2 x (28 / 4.5) x 3.5. 14 x 3.5 / 4.5. 10.89
@wasimahmad-t6c3 ай бұрын
10 100%raite full area 8×14÷2=56 )(3.4285714286×6÷2=10