Circumradius R =abc/4 area of triangle a=5 ,b=5 c =6 , area of triangle = square root of s(s-a) (s-b) (s-c) and s=a+b+c÷2. s= 5+5+6÷2. s= 16÷2=8. Area of the triangle = square root of 8×[8-5] ×[8-5]×[8-6] = square root of. 8×3×3×2 =square root of 144 =12 circumradius R= abc÷ 4 area of the triangle R= 5×5×6÷4×12 =150÷48=25÷8= 3.125
@Logging_Out8 күн бұрын
This is the right answer ✅
@pooransingh18823 ай бұрын
The method of intersecting chords will also yield the radius more quickly(4*x=3*3).This yields a diameter of 6.25.,r=3.125
@EllehsdeeАй бұрын
I'm new to this, but it seems that it should be (4x = 5*5), which solves to x = 6.25. Or am I missing something? Again, I am new to this, so please correct me if I am wrong.
@pooransingh1882Ай бұрын
@Ellehsdee The x value is the section of the diameter below the chord.This value is calculated to be 2.25 from the formula for intersecting chords (Euclid) The length of the diameter is calculated to be 4+2.25=6.25. From this, the radius is calculated to be 6.25/2 =3.125.
@Ellehsdee29 күн бұрын
@pooransingh1882 Ahh, thank you so much for the charity on this.
@Logging_Out8 күн бұрын
Right ✅✔️
@monroeclewis19733 ай бұрын
4th way: Find h=4 by the Pythagorean theorem as you have. Then, draw a line from the center of the circle on h to intersect line AC at the midpoint, Q, at a right angle. Triangle AOQ is similar to the larger right triangle ACP. Therefore, PC/AP=OQ/2.5. 3/4=OQ/2.5. OQ = 15/8. Now use the Pythagorean theorem to find the radius, OA: (15/8)^2 + (5/2)^2 = OA^2. OA or R = 25/8.
@imetroangola173 ай бұрын
_Outro método:_ A área ABC é facilmente encontrada fazendo [ABC]=2×(4×3)/2=12 [ABC]= abc/4R, onde a,b e c são os lados do triângulo ABC e R é o raio da circunferência. Assim, 12=5×5×6/4R 2=5×5/4R 8R=5×5 *R=25/8*
@hongningsuen13483 ай бұрын
The most direct method using no construction is to use Heron's formula to calculate area of the triangle from the 3 sides and then use circumradius formula to find R = abc/4xarea.
@Monsieur_Cauchemar-YT3 ай бұрын
You don't need Heron's formula - it's an isosceles triangle. The line from the apex to the base intersects the base at 90 degrees at the midpoint of BC at say, D. So BD = CD = 6/2 = 3. You then have a Pythagorean 3-4-5 triangle, with AD = 4. The area is then BD*AD = 3*4 = 12.
@hongningsuen13483 ай бұрын
@@Monsieur_Cauchemar-YT My point is not using any construction including perpendicular bisector theorem for isosceles triangle.
@Monsieur_Cauchemar-YT3 ай бұрын
@@hongningsuen1348 Fair enough, I just personally think Heron's formula is a lot more work.
@WahranRai3 ай бұрын
@@Monsieur_Cauchemar-YT No, because the Heron is general for any triangle ! His formula is correct
@Monsieur_Cauchemar-YT3 ай бұрын
@@WahranRai I know it does. I just said in the case of this particular isosceles triangle that it's a lot more work. Lol.
@devondevon43663 ай бұрын
25/8 Draw a perpendicular line from BC to form two 3-4-5 right triangles, ABP and ACP. BP = 3 and AP=4 label O on line AP as the circle's center. O will be located on AP, given the isosceles triangle, ABC. From O, draw a line to B, then draw another to P to form a triangle, BOP OB = r OP= 4 -r (since AP=4), and BP =3 Using Pythag : r^2 = 3^2 + ( 4-r)^2 r^2 = 9 + 16 + r^2 - 8r 8r = 25 r = 25/8 Answer
@thangavelm.m80033 ай бұрын
Nicely explained sir., thanks.
@devondevon43663 ай бұрын
@@thangavelm.m8003 Glad to be of help
@jamesfaizi77713 ай бұрын
Just draw diameter from point A intersecting BC in 2 segments of 3 Th height of isosceles triangle is obviously 4 (due to two 345 triangles or 30,60,90 degree angles) Now use intersecting rule 3x3=9 9 ÷ 4= 2.25 2.25 + 4 = 6.25 diameter 6.25 ÷ 2 = 3.125 Radius
@WahranRai3 ай бұрын
My method, use of formulas : R = a*b*c/ 4*A and (Heron) A = sqrt(p*(p-a)*(p-b)*(p-c) with half perimeter p=0.5*(a+b+c) and A = triangle area p = 0.5(5+5+6) = 8 ---> A = sqrt(8*3*3*2) = 12 ----> R = 5*5*6 / 4*12 = 25/8
@rakeshseth14612 ай бұрын
😮T😮
@chinkythapa12502 ай бұрын
One of the Finest Method No other Calculation is required after this Heron's formula is enough for all types of Triangles to calculate Area.....
Without using heron formula or any construction other than vertical height. After finding height, we can use a simple formula as below. Radius= product of sides of triangle other than base divided by 2 times of height. So, Radius= 5*5/(2*4)= 25/8.
@renewd15 күн бұрын
I used 2nd method. I was not aware of 3rd method. Very interesting use of law of sines to equal 2R of the circumcircle.
@cjburian12 ай бұрын
This was a fun one, thanks. Seemingly perplexing problem actually able to be solved in a person's head!
@makermaker113 ай бұрын
We divide triangle in middle to 2 right triangles and they will be both similiar because it is icoseles so 3-4-5 specaial triangle so height is 4 then we use inside circle cors where from radius to cord it divides cord to 2 which makes base 3 and side with 5 to 5/2 then we measure height for the base triangles which will be |/r²-9 then we add both r and |/r²-9 to find that both equal 4
@santiagoarosam4303 ай бұрын
D es el punto medio de BC y "s" es la flecha del arco BC---> Potencia de D respecto a la circunferencia =BD*DC=AD*s---> 3*3=4s---> s=9/4---> 2r=4+(9/4)=25/4--->r=25/8. Gracias y saludos.
@josephsalinas67253 ай бұрын
Quarto método: teorema de Faure. Quinto método: S=abc/4R. Aprendi aqui, professor !
@lusalalusala29663 ай бұрын
After finding the length of the height from A, I would introduce cartesian coodinates with the origin to be B(0,0) and BC the x-axis, so C has coordinates C(6,0) and A(3,4). Now you have to find the radius though 3 points B(0,0), C(6.0) and A(3,4) with the center O(a,b). Because the triangle is isocele, the point O is on the vertical line through A, so a=3. (4-b)^2=R^2=9+b^2, so b=7/8. Finally R=4-7/8=25/8.
The radius is 25/8. This is definitely an example of Pythagorean triples. Foe the first method, this involves the perpendicular bisector theorem and the intersecting chords theorem. For the second method, this uses the perpendicular bisector theorem and shwos the right scalene triangle that is contained in the equilateral triangle. I like the second method and I think that I need to start visualizing the equivaleny intersecting chids theorem on equilateral triangles. And I think that THIS is anothe property of Pythagorean triples. Also please look up my comment for yesterday's video.
@alexniklas87773 ай бұрын
4th method, the easiest 1) From vertex A we lower the perpendicular AP to BC. 2) From the middle of AC to AP, construct a segment NO perpendicular to AC. AN= NC= 5/2= 2.5. AO= R. 3) 5/4=R/2.5; R=5×2.5/4= 3.125
@ناصريناصر-س4ب3 ай бұрын
In triangle ABC drawn in a circle of radius R where AH is the height related to side BC we have the relationship: AB*AC=AH*2R and from it 5*5=4*2R so R=25/8
@rajgopalraogade4351Ай бұрын
Insted of using sine formula we can solve it in an easy way, viz , Extended BP touches the circumference (say) at Q. Then BP = 2C, Hence, (BP)^2 = (PQ)(AP) Or 3^2 =. 4(PQ) Or. PQ = 9/4 = 2.25 Or AQ = 4+2.25 = 6.25 which is 2r Hence r = 6.25/2 or 3.125
@zawatsky25 күн бұрын
Ещё ∠ВОС=2∠ВАС (по правилу градусной меры дуги, на которую оба опираются). Так можно доказать, что ΔCOP~ΔACP, а значит - тоже египетский. Коэффициент подобия ¾, т. о. РС=¾*4, ОР=¾*3, ОС=R=¾*5=15/4=3³/₁₅=3¹/₅.
@Amt-p2h25 күн бұрын
You deserve 10⁶ likes, thanks for ur valuable videos ❤
@lasalleman67923 ай бұрын
Find the angles. Simple Pythagorean. Then use this formula: circumradius = a/ 2sin(A) Where a , is a side of the triangle, and A, is the angle opposite of side a. Circumradius R = 3.125
@maluhadli4683 ай бұрын
What is the value of the angle A how to find explainit
@lasalleman67923 ай бұрын
@@maluhadli468 It's a simple Isosceles triangle. You can split the existing triangle into two equal right triangles and simply use the Pythogorean rule to find the angles. The angles at B and C are both 53.13 degrees. Angle A is 73. 74 degrees. The height from line BC is 4. So you basically have two 3,4,5 right triangles joined together. They share the same height, which is 4. Measured from the base line BC
@Amt-p2h25 күн бұрын
4th method ABC is the length of the largest arc in the circle BC is the length of the chord of the largest arc in the circle AP is the height of the triangle Its length = 4 Radius = [(the square of the length of the chord ÷ 8 the height of the triangle) + the length of the height of the triangle ÷ 2] R = [(6²÷8×4)+4÷2] =[(36÷32)+2]=3.125
@王剛-m7n3 ай бұрын
If we use the formula r²=a²b²c²÷[(a+b-c)(b+c-a)(c+b-a)(a+b+c)], then it is so brutal
@is77283 ай бұрын
Me thinking about the same thing
@KipIngram3 ай бұрын
Split the triangle vertically to get a 3/4/5 right triangle. The angle at C thus has sine of 4/5 = 0.8. By the law of sines we then have 5/0.8 = D, the diameter. Therefore the radius is 2.5/0.8 = 25/8. Q.E.D.
@adgf1x13 күн бұрын
Ar. of inscribed triangle=12sq.Radius (R)=5×5×6/4×12=25/8 unit=3.125 unit.ans (by abc/4.delta)
By using herons formula Half perimeter of ∆ABC is 5+5+6/2=8 :.area=√s(s-a)(s-b)(s-c) =√8(8-5)(8-5)(8-6) =√8*3*3*2 =3√2*2*2*2*2 ১ =12√2 1/2*6*x=12√2 3x=12√2 x=4√2 By Circle triangle theorem Radius=4√2*2\3 =8√2/3 =8*1.141/3 =3.77(aprox)
@bpark10001Ай бұрын
There is simpler method than all 3 approaches shown. Proceed as in method 1 to get AP = 4. Construct line CQ. Triangle ACQ is right triangle & is similar to triangle ACP having 3:4:5 side ratio with scaling factor = 5/4. So AQ = (5/4)(5) = 25/4. Radius is half that = 25/8.
@KrylovYuriiАй бұрын
Both ACP and AQC are right triangles with common angle A. In this reason they are similar ==> |AQ|/|AC| = |AC|/|AP| ==> |AQ| = |AC|*|AC|/|AP| = 5 * 5 / 4 = 25/4 R = |AQ|/2 = (25/4)/2 = 25/8
@RAHUL_CARS2 ай бұрын
7:17 Objection Why you useing pq as radius?
@cesarelai3 ай бұрын
A theorem says radius = (ABxACxBC)/(4 x Area). Or: in triang. (ABQ) you can easily find PQ by Euclides 2nd Theorem: PQ = BP^2/AP
@alexniklas87773 ай бұрын
The easiest way R=abc/(4S); S= 6×4/2= 12 R= 5×5×6/(4×12)= 150/48= 3.125
@MrPaulc2222 ай бұрын
I went for 4(2r - 4) = 9 8r - 16 = 9 8r = 25 r = 25/8 or 3.125 if preferred.
@SkinnerRobot2 ай бұрын
Excellent!
@adgf1x23 күн бұрын
ar.of inscribed circle=12 sq.radius of circle=5×5×6/4.12=25/8=3.125 unit.ans
@AlbaRosa-ui3xs5 күн бұрын
Calcolato A P, si applica il teorema di Euclide al triangolo AQB (rettangolo perché iscritto in una semicircconerenza) e si calcola AQ...
@gnanadesikansenthilnathan67509 күн бұрын
Can we apply the concept of circumcentre
@RobertRoth-oj6zzАй бұрын
The way the teachers explain it to you complicates it even more
@felixmgallegos36303 ай бұрын
(2"R-4)*4=3*3 por el Teorema de las cuerdas
@sujoymukherjee19302 ай бұрын
How do you conclude the perpendicular passes through centre?
@pojuellavid2 ай бұрын
По определению. Перпендикуляр к хорде, проведенный через ее середину является диаметром
@kateknowles80553 ай бұрын
Midpoint of BC: calling it M . Extending AM to P where AP is diameter. BC =6 ,given. 6/2=3 BM.MC =3.3.=9 Two chords bisecting : product of their parts are equal. AM.MP =9 AM.AM= 5.5-3.3 =16 so AM=4. So MP=9/4 AP is diameter = 4 +9/4 equals 2.radius. 2r=6+1/4 Radius is 3+1/8. Now I'll check this.
cos A/2 = h÷5 (h hauteur du triangle isocèle de sommet A et de coté 5) cos A/2 = 2,5÷R (R rayon du cercle de cente O et de rayon recherché et 2,5 demi-base du triangle isocèle de sommet O et de base 5) h coté de l'angle droit du triangle rectangle d’hypoténuse 5 et de second coté de l' angle droit qui vaut 3 (demi-base du triangle isocèle de sommet A) Donc h=4 (Pythagore) d'où : 4÷5 = 2,5÷R R = (5 × 2,5)÷4 R = 3,125
Why so complicate? If you have QP = 9/4 and AP = 4 .... so you have the diameter 9/4 + 4 .... r = diameter/2
@wasimahmad-t6cАй бұрын
94=2.25+4=6.25÷2=3.125×3.125×3.14159268=30.6796ful area
@nizarahammad45003 ай бұрын
Excellent
@violetadeliu7342 ай бұрын
Gjate gjithr jetes time kam pasur respekt te vecante per perdonat qe kishin arsye te shendoshe ne matematike. Por me falni per nje verejtje ne vizatimin e krsaj figure. Te paktn me sy seg BC ta benit me te gjate. Kete e arrinit ta vendosni me afer pike O. Pak a shume edhe nje figure e ndertuar mire te ndihmon ne zgjidhje. Flm
@OguOne2 күн бұрын
OM L AB => Tr. OMB=MOA MA = 2 1/2 => MA/R = 4/5 FROM ABP => R=25/8
@saeedhabibi5473 ай бұрын
Very good
@viveksinghchauhanbikingsin1425Ай бұрын
2/3 of perpendicular which is 4 ans is 8/3
@contelefurca26 күн бұрын
minute 5.50- is there not an error ?
@sorourhashemi32492 ай бұрын
Thanks easy
@SOLOPOT_GH3 ай бұрын
Why not adding 4 and 9/4 and divide by 2
@次野先生Ай бұрын
R=5×5×6/(4×12)
@wasimahmad-t6c2 ай бұрын
3.125×3.125×3.14159268=30.6796 full area
@subhashchandramishra80673 ай бұрын
Second method is easier than other methods
@ivaldopinhofilho76543 ай бұрын
S= abc/ 4r ,mais simples
@tuttouno24 күн бұрын
AP2 = AP x PQ; 9=4xPQ; PQ=9/4 ...
@rgcriu25303 ай бұрын
👍👍👍👍👍👍👍👍👍👍👍👍
@qasima.5180Ай бұрын
R=abc/4s.
@user-cq8xh5vl1p7 күн бұрын
Wow what is this accent from which country?
@mohammadwatan1992Ай бұрын
God taught mathematics and geometry to humans, so who can understand God's mathematics.
@rezatakdast2 ай бұрын
3.13
@MathsSirg3 ай бұрын
❤
@Ari-pw6nuАй бұрын
Mericans no unusand maff.
@kolayskyboy2674Ай бұрын
Faking difficult, so complex faking maths😅
@2012tulio3 ай бұрын
3.12
@devondevon43663 ай бұрын
25/8
@ManojkantSamal3 ай бұрын
25/8=3.25
@dipankardasgupta51252 ай бұрын
4 cm
@adgf1x3 ай бұрын
r=25/8
@moviesforyou67942 ай бұрын
It's 3.125
@heriqnazinjixulyan9028Ай бұрын
Ավելի էֆեկտիվ կլիներ օգտագործել լարին ուղղահայաց տրամագծի հատկությունը երբ հաշվել էր բարձրությունը
@prashantvishwa2 ай бұрын
Pata nahi yaar main to sqrt(3^2+x^2)=4-x karke solve kar lunga maths student bhi nahi hun
@theresaotoole9141Ай бұрын
The right angle 3,4,5 triangle is immediately obvious, while knowing that BP x PC (3 x 3 = 9) divided by 4 (= 2.25) gives you the diameter of 4 + 2.25 = 6.25. The radius is then 6.25/2 = 3.125 (or 25/8). Done in 20 seconds. Too easy.