Je sors d'un de tes lives, je voulais jsute laisser une trace écrite pour te remercier de ton investisement personnel dans tes vidéos/live, de ton humour, de tes explications limpides, et de ta prévenance envers les étudiants. Merci encore et bonne année du pangolin !
@lauraamoroso43804 жыл бұрын
Merci beaucoup pour ce que tu fais! Une vidéo de 10minutes beaucoup plus utile que certaines heures de cours en amphi :)
@kaesarka32438 ай бұрын
Vos courtes vidéos font notre bonheur. Que Dieu vous bénisse
@jacquelinefeliciteyengue50423 жыл бұрын
Bonsoir Professeur, c'est aujourd'hui même que je découvre certaines de vos vidéos. Celle-ci est la première à parcourir... elle vient résoudre vraiment le problème d’interprétation de ces indices de performances diagnostiques. Un grand merci pour votre méthodologie.
@nathalieurbain68763 жыл бұрын
Merci pour toutes ces super vidéo, les étudiants IPA rament vachement moins grâce à vous/toi!!!!!!
@arefehshahidi2000 Жыл бұрын
Merci infiniment Pr Geek, c'est tellement plus clair :)
@Muffin31Man4 жыл бұрын
WoW mais heureusement que vous êtes là. Après avoir passé la matinée à bachoter et a essayer de comprendre, avoir les idées claires, je lance cette vidéo et c’est la révélation. Il existe bien un fil conducteur à tout ça. Du concret au Nomogramme de Fagan HALLELUJA!!!!!! Merci pour votre investissement
@delphinederubeis91082 жыл бұрын
ah punaise, merci pour la vidéo !! Et surtout l'extrait final...tellement à l'unisson de ce que je ressens face aux biostats et LCA je suis MDR !! merci c'était instructif ET croustillant :)
@ozedSkynow2 жыл бұрын
mon dieu, quel boss merci !
@benkheddaimene17132 жыл бұрын
merci enormement
@evelyyynerunser87554 жыл бұрын
Merci beaucoup pour votre travail !!! 😃😃
@IstafidaIstafida4 ай бұрын
Bonjour et mrc pour votre vidéo elle m'a bcp aidé.Je voulais savoir qu'est ce qui se passe lorsqu'on modifie le seuil de la sensibilité et de la spécialité
@souaadregaiaia2184 Жыл бұрын
Merci Pr
@anaiscathya5952 Жыл бұрын
merci merci merci
@lecomptoirdeletudiantinfir81823 жыл бұрын
Un grand merci !
@cleabard2904 Жыл бұрын
merci bcp!!!
@Eyos224 жыл бұрын
Merci énormément !!! Très très bonne vidéo
@linajohnson61254 жыл бұрын
Bonjouuuur merci infiniment pour toutes ces explications \( >\\
@antoinedarneau6193 жыл бұрын
Merci !
@jacquelinefeliciteyengue50423 жыл бұрын
Dans votre présentation, vous avez parlé du Nomogramme de Fazan, comment peut on l'appliquer dans un logiciel comme SPSS par exemple puisque c'est lui que j'utilise pour mes analyses actuellement?
@sifaakilimali8211 Жыл бұрын
😂😂😂😂😂 je n'ai jamais appris autant en riant. Ne changez rien c'était parfait 😂😂😂😂😂😂
@mrkeinzi3 жыл бұрын
à 0:42 le FP en bas à droite ça devrait pas être VN pour vrai négatif ?
@flynil95974 жыл бұрын
Oh mais j’ai trouvé une super chaîne on dirait! 😊
@doctorlife4 жыл бұрын
Excellent 👌🏼
@JulesV354 жыл бұрын
Génial merci
@gabriellebitja51784 жыл бұрын
Merci
@zeusthegreatest78194 жыл бұрын
Merci!!
@lubranolisa77803 жыл бұрын
bonjour, l'utilisation d'une loi binomiale pour detecter un grand nombre de malades est-elle envisageable ? merci
@stanislassdjoka36844 жыл бұрын
Bonjour monsieur . merci beaucoup pour vos vidéos . mais j'ai une question concernant des différents tests qu'on peut faire . Si notre test est très sensible il permet tout comme un test très spécifique de classer les malades des bons malades ou pas ?
@stanislassdjoka36844 жыл бұрын
Pardon .en fait ce que je veux demander c'est si un test est très sensible il peut permettre comme un test très spécifique de classer les malades des non malades ou pas ?
@minao94852 жыл бұрын
Merci pour cette vidéo géniale, c'est d'une très grande aide !
@sabit5503 жыл бұрын
J'adore tes vidéos, juste VN dans le tableau de contingence ** (même si osef un peu..)
@pierrejaigu9217 Жыл бұрын
Bonjour ! À 8:10 vous dites que le rapport de vraisemblance est la caractéristique intrinsèque permettant de faire le lien entre prévalence et valeur prédictive Je ne suis pas sûr de comprendre pourquoi c'est une caractéristique intrinsèque, le rapport de vraisemblance ne varie pas avec la prévalence ? Merci beaucoup !
@wipay904 жыл бұрын
Salut. Pour les test de performances diagnostiques j'arrive pas à comprendre l'utilité du graphique Bland et Altman pour mettre en rapport le test en cours d'analyse et le test de réferance. Est-ce qu'il sont utiles en pratique courante?
@PrGeek4 жыл бұрын
Non. Le graphique de Bland et Altman est utilisé pour montrer la concordance entre deux mesures. Il n'est pas très habituellement utilisé dans les études de performances diagnostiques.
@sabibozetine57334 жыл бұрын
Bonjour professeur On peut avoir une explication sur le calcul de nombre de sujet nécessaire Mercii
@PrGeek4 жыл бұрын
La video est en cours de montage
@sabibozetine57334 жыл бұрын
@@PrGeek ok merci prof
@ericazul16834 жыл бұрын
Bonsoir professeur , Je pourrais vous envoyer un article en anglais pour vous me l analyser, Je serais très reconnaissante Cordialement
@deltora43714 жыл бұрын
J'ai du mal à comprendre... HELP Si le signe de Babinski, qui est pathognomonique, permet d'affirmer la maladie en présence du test, je ne comprends pas en quoi il permet d'exclure la maladie en son absence (-> "le taux de spécificité c'est le nombre de vrais négatifs"). Si un test spécifique est un test qui permet d'affirmer la maladie en présence d'un test positif, il représente donc le nombre de vrais positifs (Test + M+), pas de vrais négatifs, si ? Du coup idem pour la sensibilité à l'inverse... si un test sensible permet d'exclure une maladie si le test est négatif, il représenterait le nombre de vrais négatifs... pas de vrais positifs. En fait ma logique appliquée aux exemples de la vidéo m'amène à la conclusion spécificité = vrais positifs (affirme la maladie en présence d'un test +) et sensibilité = vrais négatifs (exclue la maladie en présence d'un test -). Soit TOUT L'INVERSE de ce qui est expliqué dans la vidéo, ça fait 45 min que je suis dessus j'en ai des noeuds au cerveau :(
@PrGeek4 жыл бұрын
La faille dans ton raisonnement est que tu réfléchis sur les valeurs prédictives et pas sur les sb/sp. Pour la sensibilité, 1-vrai positifs = faux négatifs (le dénominateur est les malades et pas les positifs !) un test très sensible : il y a 100 pct de vrais positifs mais aussi bcp de faux positifs. Il est donc utile surtout quand il est neg.
@deltora43714 жыл бұрын
@@PrGeek Aaaaah ben oui effectivement je sais pas pourquoi j'étais complètement bornée sur les VP ^^" Merci de la réponse !