Evaluating a series of factorials

  Рет қаралды 12,190

Prime Newtons

Prime Newtons

Күн бұрын

Пікірлер: 41
@Crk-ot6um
@Crk-ot6um 7 ай бұрын
What a coincidence! I too used the telescopic series and the idea of general term to solve this. At last I also got 1/2! - 1/2024!, this seemed not good to me as I felt it may be a vague answer but anyway, I continued with your video. I'm happy at last that I got one of the answers to be right after solving many of the questions from your thumbnail and video!
@surendranathkharat4225
@surendranathkharat4225 26 күн бұрын
You are a Great Teacher
@emmanuelonah4596
@emmanuelonah4596 7 ай бұрын
It's beautiful to see how the telescoping series saved the day. Thank you, you are an amazing teacher
@djez8
@djez8 7 ай бұрын
Thank you from Hong-Kong (but I am french...)! Your explanations are always clear and accuratr, I enjoy every time!
@PrimeNewtons
@PrimeNewtons 7 ай бұрын
Glad you like them!
@SanePerson1
@SanePerson1 4 ай бұрын
An interesting aside: the general term of the related INFINITE series looks very similar to the general term for the Maclaurin series for e¹ - the difference is the "k+2" in the denominator. A way to get that in the denominator is to multiply the series for e^x by x: x + x²/1! + x³/2! + x⁴/3! + ... Integrate that term by term one gets the series you have here with x = 1 and an extra term in front of 1/2 that comes one term in front of x²/2. To sum the series then you can integrate xe^x from 0 to 1 and subtract 1/2; the series sum is 1 so you get 1/2 for the sum of the infinite series - as it should since the limit of the tiny correction is 0 when you let 2024 → ∞.
@dougaugustine4075
@dougaugustine4075 7 ай бұрын
I'm going to have to watch this again. Summations with the signa notation were always a puzzle for me as was probability with permutations and combinations.
@Coder-ff8iw
@Coder-ff8iw 7 ай бұрын
Excellent sir❤ . I appreciate your approach. Your teaching method is so easy that we can understand very easily
@Vabadrish
@Vabadrish 7 ай бұрын
Wow got it in first try !! Thank you sir for such beautiful questions ....love your videos ❤
@komalshah1535
@komalshah1535 7 ай бұрын
Telescoping series. Very interesting. Thanks.
@dirklutz2818
@dirklutz2818 7 ай бұрын
Great idea!
@alexandrecuchi2400
@alexandrecuchi2400 7 ай бұрын
Never see telecoping series. But I would whatch a video about them. Greate work
@violet_broregarde
@violet_broregarde 4 ай бұрын
Thank you for this problem, it was very fun to solve :D
@AzmiTabish
@AzmiTabish 7 ай бұрын
Awesome. Thanks.
@nothingbutmathproofs7150
@nothingbutmathproofs7150 5 ай бұрын
Beautiful!
@surendrakverma555
@surendrakverma555 7 ай бұрын
Good 👍
@griffinf8469
@griffinf8469 7 ай бұрын
I’m confused about the 5:47 to 6:20 minute mark. How do you go from (k+1)! to (k+1)k! and how do you go from (k+2)! to (k+2)(k+1)k!? Can someone explain the steps in doing that?
@griffinf8469
@griffinf8469 7 ай бұрын
Nevermind, I figured it out.
@panjak323
@panjak323 3 ай бұрын
Didn't know what I was looking at... Written it as sum 1/((n+2)n!) and guessed 1/2 from first 4 terms, which is hella close, considering I don't do maths very often
@Harrykesh630
@Harrykesh630 7 ай бұрын
Telescopic series ✨
@77Chester77
@77Chester77 7 ай бұрын
Got a new hat? Looks great 😀
@PrimeNewtons
@PrimeNewtons 7 ай бұрын
Not new. Just not frequently worn compared to others .
@Jon60987
@Jon60987 6 ай бұрын
@@PrimeNewtons You missed the chance to showcase your hat by posing so that the summation sign that you put in the forefront of the screen would be perfectly aligned on the top part of your hat. I also like that hat, and it is good enough to get a brief 5 seconds when it is the star of the show :)
@PrimeNewtons
@PrimeNewtons 6 ай бұрын
@@Jon60987 🤣🤣🤣🤣🤣
@epikherolol8189
@epikherolol8189 7 ай бұрын
12:40 That's scary😈
@garydunken7934
@garydunken7934 2 ай бұрын
🤣🤣🤣
@Necrozene
@Necrozene 6 ай бұрын
Oh! I get it now! Yay! Go Prime Newtons!
@Necrozene
@Necrozene 6 ай бұрын
I am currently struggling to figure out why P.N. did not do the formula from 1 and then subtract of the easy bits at the start...
@study_math
@study_math 7 ай бұрын
面白い~😄
@ayushsingh3174
@ayushsingh3174 7 ай бұрын
Nice problem
@mab9316
@mab9316 4 ай бұрын
This series converges to 1/2.
@quigonkenny
@quigonkenny 6 ай бұрын
"...a very small number..." Yep. Unless you're looking for an answer with over 5800 significant digits, the answer is 0.5...
@artandata
@artandata 3 ай бұрын
answer is: 1/2 - 1,5479244899×10⁻⁵⁸¹⁵ just a little very little bit less than 0.5 😄
@mrbenwong86
@mrbenwong86 2 ай бұрын
What sort of people dream up these questions at the first place.
@0llie
@0llie 7 ай бұрын
next video: calculate 2024! manually 😂
@PrimeNewtons
@PrimeNewtons 7 ай бұрын
🤣🤣
@Thampuran-o9o
@Thampuran-o9o 24 күн бұрын
👍👍👍👍
@carlosfox8201
@carlosfox8201 7 ай бұрын
Double beauty
@ivanhuertas5307
@ivanhuertas5307 7 ай бұрын
Thanks brother you are just amazing!! ..one question speaking about "series" on the "Soul-Series" what are your believes..do you believe in the Lord JesusChrist?
@Necrozene
@Necrozene 6 ай бұрын
Simple. Just whip out your calculator. lol NO! I want to see how Prime Newtons does it.
@lucasborges6447
@lucasborges6447 6 ай бұрын
Esplendido.
Prove that abcd = 2004
10:36
Prime Newtons
Рет қаралды 12 М.
Solving a septic equation
10:43
Prime Newtons
Рет қаралды 65 М.
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
Regional Math Olympiad Problem
13:55
Prime Newtons
Рет қаралды 9 М.
Half factorial using the gamma function
15:21
Prime Newtons
Рет қаралды 23 М.
Square-root of a matrix
13:51
Prime Newtons
Рет қаралды 38 М.
Sum from 1 to infinity of 1/(k^2+1)
7:16
mathemagical
Рет қаралды 6 М.
Functional Equation
14:15
Prime Newtons
Рет қаралды 397 М.
Infinitely Nested Radicals (Part 1)
17:43
Prime Newtons
Рет қаралды 13 М.
Find (x+y+z) [Harvard-MIT] Guts contest
17:33
Prime Newtons
Рет қаралды 16 М.
Vieta's Formula
14:34
Prime Newtons
Рет қаралды 21 М.
Where did this come from?
20:10
Prime Newtons
Рет қаралды 21 М.
x^y = y^(x-y)
15:48
Prime Newtons
Рет қаралды 27 М.