In this video, I showed how to find the limit of an exponential log function
Пікірлер: 14
@carolnoelle24686 ай бұрын
Great explanations and smooth chalk. Thanks!
@ebrimagajaga4639 Жыл бұрын
Yeah thank you so much..... I have learned from your video..... Additionally the question can be solved by easily plugging large positive numbers e.g 100, 10000, 1000000, 100000000 etc, each of these would directly give answer as exactly 1. Thank you! I love the way you've delivered the lesson
@masoudhabibi700 Жыл бұрын
Thank you master....very well
@utuberaj60 Жыл бұрын
Great derivation using LH rule- but with the ln idea
@takudzwajoezaza6467 Жыл бұрын
Great video❤
@punditgi Жыл бұрын
We need Prime Newtons! 😊
@WagesOfDestruction5 ай бұрын
nice, I solved it by inspection by saying e^-x when x-> inf is 0. so inf^0 ->1. => answer =1
@rangaweerakkody16511 ай бұрын
I would do it as a two part problem. First I will show that y = e^-x when lim->inf y ->0. Then x^y when y->0 would be x->1.
@Ennio483 Жыл бұрын
Let e^(-x)=y then y goes to zero So lim when x goes to infinity of x^[e^(-x)] = lim when y goes to ZERO of (- ln(y))^y Since lim (-ln(y)) at 0 =+ infinity lim y at 0 =0 Then lim at 0 of (-ln y)^y = 1 It's a limit of a power with a base coming greater but the exponent is going to zero . Thank you for your efforts , but I hope you'll be convicted 😂I usually avoid L'HOSPITAL'S
@PrimeNewtons Жыл бұрын
I share your sentiment about L'Hospital's Rule. Sometimes you just use it to save time
@Ennio483 Жыл бұрын
Yes of course , good explanation👍
@suyunbek1399 Жыл бұрын
now do the derivative of p to the eye to the am to the p i like good kitty as i like good tea
@smiley_exe4960Ай бұрын
Or just substitute… e^-x = 1/e^x => lim x -> ♾️ (x^e^-x) = lim x -> ♾️ (x^(1/e^x)) = ♾️^0 = 1.
@salahbekhit26853 ай бұрын
The limit of the natural logarithm is not always equal to the natural log of the limit The conditions for equality are continuity ,and boundedness We should mention at least the continuity in our problem Good work,but not perfect