I have gone through many videos for maximum likelihood for the last 24 hrs, you gave the excellent explanation with the example to make me understand the concept. Thank you brother.
@abdullahhadi54502 жыл бұрын
out of other videos regarding this topic, it feels like your video clearly explains the objective that likelihood and probability achieve. I rarely comment, and when I comment on something then the video explanation is awesome 🔥
@warnerferraz11852 жыл бұрын
Mesej yang jelas, struktur yang jelas, mudah difahami, terima kasih
@carlscaglione2022 Жыл бұрын
Nice. Clear explanation because the distinction between being PDF-driven vs. event-driven or situation-driven is a crucial distinction
@gajendra19873 ай бұрын
amazing explanation, hats off
@faizulislam90474 ай бұрын
Thank you so much. Your explanation is outstanding!
@HarshaJK5 ай бұрын
Thank you for explaining this concept so well. I am very clear of this topic now.
@UnfoldDataScience4 ай бұрын
Glad it was helpful!
@dhanushreeyadav1442 Жыл бұрын
very understandabel explanation sir thank u very much 🤝
@theplayer26473 жыл бұрын
Thankyou very much sir 🙏🙏🙏 I am struggling from last 5 days for this
@UnfoldDataScience3 жыл бұрын
Welcome.
@spaceadvanture6458 Жыл бұрын
You explained Better than my so called paid certification course
@devirajfly Жыл бұрын
Very clear explanation ! Thank you
@mahsaaa534 Жыл бұрын
Thank you so much for this video. the only video that helped me understand this today. You are amazing!
@UnfoldDataScience Жыл бұрын
Most welcome.
@kmishy Жыл бұрын
this video gave me a perfect explanation
@md.aamirsohail71333 ай бұрын
Good explanation.
@mehedeehassan2083 жыл бұрын
7:03 oped a new world for me ... thanks ..
@UnfoldDataScience3 жыл бұрын
Welcome Mehedee.
@mehedeehassan2083 жыл бұрын
Do you have kaggle profile.??.just want to follow and learn
@utkarshsingh26752 жыл бұрын
nice video sir...thanks
@morganvhulenda3 жыл бұрын
Helpful, thanks
@UnfoldDataScience3 жыл бұрын
Thank you.
@giraganipallavi45943 жыл бұрын
thq very much sir crystal clear explaination
@UnfoldDataScience3 жыл бұрын
Thanks Pallavi.
@arshdeep93559 ай бұрын
best explanation
@RobertWF423 жыл бұрын
I learned likelihood as L(mu, sigma | x) for a single value of x rather than a range of values, which is equal to the density. For a range of x values x_0 < x < x_n the likelihood is then equivalent to the probability, correct?
@naveensolanki9054 Жыл бұрын
No, the likelihood and the probability are not equivalent, even for a range of values of x.
@sylwiagotzman5422 Жыл бұрын
It is probability either way, just it is called likelihood in one of the cases.
@life_inked Жыл бұрын
You relieved the burden
@shooter543911 ай бұрын
great explanation
@moopoo1232 жыл бұрын
Thank you. Very clear explanation.
@dodolookr2 жыл бұрын
very clear , thanks
@dd12782 жыл бұрын
Very clearly explained.
@UnfoldDataScience2 жыл бұрын
Glad it was helpful!
@sudipnarayanchoudhury11122 жыл бұрын
Pls cover Degrees of freedom..
@UnfoldDataScience2 жыл бұрын
Already created, search with "topic name + unfold data science"
@javid6592 жыл бұрын
Very well explained dear. Thank you.
@UnfoldDataScience2 жыл бұрын
Thanks Javid 🙂
@nawfelnawfel49502 жыл бұрын
Very clear like always thanks a lot
@enerz91352 ай бұрын
Hindi Bolta to jayad Maza aata bhai Leaving Your Video now
@piyalikarmakar59793 жыл бұрын
Thank you so much sir for this vedio.. Kindly do more related vedios on estimations.
@UnfoldDataScience3 жыл бұрын
Sure. Thank you.
@KishanKumar-cr8hs2 жыл бұрын
very nice explanation sir
@UnfoldDataScience2 жыл бұрын
Thank you
@sangeethag97494 ай бұрын
Inference : Difference between the Probability & Likelihood! Probability corresponds to finding the chance of something given a sample distribution of the data, while on the other hand, Likelihood refers to finding the best distribution of the data given a particular value of some feature or some situation in the data. Example of Probability! Consider a dataset containing the heights of the people of a particular country. Let’s say the mean of the data is 170 & the standard deviation is 3.5. When Probability has to be calculated of any situation using this dataset, then the dataset features will be constant i.e. mean & standard deviation of the dataset will be constant, they will not be altered. Let’s say the probability of height > 170 cm has to be calculated for a random record in the dataset, then that will be calculated using the information shown below: Calculating Probability In the above, “mu” represents mean & “sigma” represents Standard Deviation. While calculating probability, feature value can be varied, but the characteristics(mean & Standard Deviation) of the data distribution cannot be altered. If in the same dataset, the probability of height > 190 cm has to be calculated, then in the above equation, only the height part would have changed. Example of Likelihood! Likelihood calculation involves calculating the best distribution or best characteristics of data given a particular feature value or situation. Consider the exactly same dataset example as provided above for probability, if their likelihood of height > 170 cm has to be calculated then it will be done using the information shown below: Likelihood calculation In the calculation of the Likelihood, the equation of the conditional probability flips as compared to the equation in the probability calculation. Here, the dataset features will be varied, i.e. Mean & Standard Deviation of the dataset will be varied in order to get the maximum likelihood for height > 170 cm. The likelihood in very simple terms means to increase the chances of a particular situation to happen/occur by varying the characteristics of the dataset distribution.
@thesirsaurabh10 ай бұрын
Jio guru
@santanuroy1351 Жыл бұрын
Is likelihood is also a probability distribution?
@prateeksachdeva1611 Жыл бұрын
very nicely explained
@UnfoldDataScience Жыл бұрын
Thanks Prateek. Pls share with friends
@sandipansarkar92113 жыл бұрын
finished watching
@salonisingh6032 Жыл бұрын
WAITING FOR MORE VIDEOS IN DATA SCIENCE. PLS SIR
@UnfoldDataScience Жыл бұрын
Hi Saloni, you can visit playlists and watch all videos of your choice. www.youtube.com/@UnfoldDataScience/playlists
@akashkumar-bq7cl3 жыл бұрын
Excellent and clear!but at what scenarios in the data science life cycle do we implement this?
@UnfoldDataScience3 жыл бұрын
Thanks Akash. Will tell that part as well.
@mlbasics62673 жыл бұрын
@@UnfoldDataScience Thank you Aman, as akash requested could you please share some real world example it will become even more clear
@makting0093 жыл бұрын
I think likelihood is mainly used in loss functions and parameters are used to draw that pdf.
@igudiaosarumwense69259 ай бұрын
Please, how can I get materials on Minimum likelihood.
@kingoftime1114 Жыл бұрын
Is this comple playlist is enough Statics used in data science???
@UnfoldDataScience Жыл бұрын
No, go to playlist ans watch more videos
@archanamaurya892 жыл бұрын
Hi, great video! Is there also a video on maximum likelihood estimation? If not, could you PLEASEEEE make one or refer a good article for me? Thanks much!
@sayanmondal38763 жыл бұрын
You are really a great teacher!! I wish you could be my mentor in the company.
@UnfoldDataScience3 жыл бұрын
Thanks Sayan.
@rohitbhosale46143 жыл бұрын
Great! Sir, please cover " degrees of fredom".
@UnfoldDataScience3 жыл бұрын
Sure Rohit.
@Anonymous00tttt2 жыл бұрын
Sir your concept is very good can you explain the latest version spss 29.0 bayesian output and likelihood curves in a seperate video
@javid6592 жыл бұрын
If you plz hint, what we can assume y-axis values.
@piero8284 Жыл бұрын
My big question is, is it common in machine learning papers to find this concept used in a interchangeably way?
@UnfoldDataScience Жыл бұрын
Sometimes yes
@adityaarvind69453 жыл бұрын
Sir can you please explain the difference between validation set and test set
@UnfoldDataScience3 жыл бұрын
Validation set to tune parameters of model Test set to find performance of model on unseen data
@hybriddude0073 жыл бұрын
The likelihood of an Indian speaking in a funny way is 100, the probability that an Indian speaks in a non-funny way is 100%
@UnfoldDataScience3 жыл бұрын
Thanks for feedback 😅
@kumarsamyak513 Жыл бұрын
what is log likelihood?
@shekhy1233 жыл бұрын
Thanks a lot. I was not getting it.
@UnfoldDataScience3 жыл бұрын
Cheers Abhishek
@himanshumangoli67083 жыл бұрын
Sir can you please explain this topic on Naive bayes handling numeric features
@UnfoldDataScience3 жыл бұрын
Noted Himanshu.
@makting0093 жыл бұрын
More data science maths videos
@UnfoldDataScience3 жыл бұрын
Sure Sunreet.
@kingoftime1114 Жыл бұрын
@@UnfoldDataScience is this playlist is is enought for data science maths portion?