im done with math in school, but i still watch your videos for entertainment. your enthusiasm is so infectious. thanks for making the world a better place, especially for those lucky enough to have you teach them in person!
@beyza20043 жыл бұрын
This is so genius but logical and easy at the same time... wow that's just why I love maths
@ashwinparthiban45613 жыл бұрын
One of your best works
@rgoodwinau9 ай бұрын
Mesmerising - both in logic and use of technology.
@chessandmathguy3 жыл бұрын
Wow that was so elegant, thanks for posting.
@legendsplayground70178 ай бұрын
Elegant proof, love your content, Jesus bless.
@nickholden5852 жыл бұрын
That was awesome, I was never good at math in school but this was a pretty straight forward logical deduction.
@photographymaniac25292 жыл бұрын
You just nailed it buddy 🤩
@Xetaas3 жыл бұрын
Thanks for the video! I find these super interesting to watch
@zanti41323 жыл бұрын
I think the easiest way to prove this is to think in base 2: 2ⁿ - 1 = 111...111 - there will be exactly n 1s in the base 2 representation of the number. So if n is composite, i.e. n = xy for integers x and y greater than 1, then 2ⁿ - 1 must have 2ˣ - 1, i.e. the number with x 1s in its base 2 representation, as a factor.
@ARKGAMING3 жыл бұрын
Ik it might be trivial but if you let n=ab with a,b≠1 you exclude the case for n=1 which is also part of your contra positive, which I can only assume means you'd need to address it separately later.
@adrianpilot1593 жыл бұрын
1 isnt a prime number therefore you can ignore the case where n=1
@ARKGAMING3 жыл бұрын
@@adrianpilot159 but we're using the contra positive where n is *not* prime
@adrianpilot1593 жыл бұрын
@@ARKGAMING my bad, u would need to check the case n=1 later
@chessandmathguy3 жыл бұрын
True, 1 is non-prime so has to be verified separately.
@m.matilda_34153 жыл бұрын
Wow thanks so much for your content, Mr Woo
@matthewzarate88517 ай бұрын
This question came up on my final exam last night (I wasn't able to solve it)--now this video came up on my feed. Funny how that works!
@softvibes16023 жыл бұрын
Thank You.
@markstavros75053 жыл бұрын
Awesome video! Could you do a video on why the Lucas-Lehmer test is correct also?
@namduonghoang63012 жыл бұрын
The MERSENNE PRIMES formula is part of the following formula 1. Let a, b, n be natural numbers with a>b - {[a^(a-b)]-[b^(a-b)]}/[(a-b)^2] is always a natural number. If {[a^(a-b)]-[b^(a-b)]}/[(a-b)^2] is prime then a-b is prime. If a-b is composite, then {[a^(a-b)]-[b^(a-b)]}/[(a-b)^2] is composite. - If [(a^n)-(b^n)]/(a-b) is prime, then n is prime. If n is composite then [(a^n)-(b^n)]/(a-b) is composite. 2. Let a, b, n be natural numbers where n is odd - With a+b being odd, {[a^(a+b)]+[b^(a+b)]}/[(a+b)^2] is always a natural number. If {[a^(a+b)]+[b^(a+b)]}/[(a+b)^2] is prime then a+b is prime. If a+b is composite then {[a^(a+b)]+[b^(a+b)]}/[(a+b)^2] is composite. - If [(a^n)+(b^n)]/(a+b) is prime, then n is prime. If n is composite, then [(a^n)+(b^n)]/(a+b) is composite.
@dr.mohamedaitnouh45019 ай бұрын
How do you make this video please with tablet and you explaining. Very nice! can you prove that there no perfect odd number??
@a3573 жыл бұрын
"This is a really cute sort of question" in other words this is too easy you should challenge yourself
@ngthanhhieu883 жыл бұрын
Thank you so much, but can you share me what kind of camera do you use?
@64faapts3 жыл бұрын
Oh Boy.... geography is hard! 😂
@tadejsivic5343 жыл бұрын
Forgot at the end? QED! There we go, now it's done.
@forthrightgambitia10323 жыл бұрын
Amazing. Things like this make you remember the cube identity for ever.
@ilirllukaci53452 жыл бұрын
Thanks.
@mukundabharadwaj8522 жыл бұрын
Awesome!!!!!!
@carlosdanielquispec37593 жыл бұрын
Si n es entero positivo y no es primo entonces puede ser la unidad o compuesto. Faltaría analizar el caso n=1. ¡Muy buen video!
@pablogonzalez37053 жыл бұрын
Ese caso es trivial.
@lipeshff3 жыл бұрын
Wow! Amazing proof. ❤ from 🌏 😊
@MathZoneKH3 жыл бұрын
love your content prof
@gggg-cu8gh2 жыл бұрын
This was in 2022 HSC!
@TusharGupta19913 жыл бұрын
Which app is being used?
@patrickkaunda14063 ай бұрын
Please can you solve this for me logy base 3=x. Whereby xy= 30
@Qermaq3 жыл бұрын
13:11 you said a, b belong to Z not N. Thus there could be negative powers. If there are negative odd powers, then we are adding a bunch of stuff but some of that stuff is negative. So it's not really proven here that the right expression cannot be 1.
@avivwachman32073 жыл бұрын
They still aren’t negative. Example: 5^(-2)= 1/25
@forpublicstuff7282 жыл бұрын
Cool! Thank you=) I was searching for the explanation of the exercise 25 in chapter 5 in the Book Of Proof (3rd edition) by Richard Hammack - just in case someone is doing the same =)
@philippenachtergal60773 жыл бұрын
Hum. So n not prime -> 2^n -1 not prime If n is an even number bigger than 2 we have n = 2p -> 2^(2p) - 1 = (2^p-1)*(2^p+1) , since n > 2 --> p > 1 and 2^p - 1 > 1. So we have a decomposition into prime factors and 2^n-1 is not prime If we try for n multiple of 3 bigger than 3 itself, we have n = 3p -> 2^(3p) - 1 = (2^p - 1 ) * ( 2^(2p) + 2^p + 1) which means as above that 2^n-1 with n a multiple of 3 > 3 is not prime Now, I "just" need to proof that 2^(kp) - 1^(kp) can be factored as (2^p - 1) ( some positive integer) for any number k or any prime number k. 2^(kp)-1^(kp) = ( 2^p - 1 ) ( 2^((k-1)p) + 2^((k-2)p) + ... + 2^p + 1 ) with both side > 1 as long as p > 1 If you distribute the product above, you'll see that you obtain 2^(kp) - 1^(kp) This means that as long as n is not prime, it can be expressed as n=k*p with k>1 and p > 1, and 2^n-1 is not prime Eheh, seems quite similar to his proof :)
@تيتانالصغيره-ك4ب3 жыл бұрын
My teacher, why did the comments in Arabic distinguish his position? I see you from the Arab world, Egypt
@qwertyTRiG3 жыл бұрын
Nice argument. I don't think number theory was covered much when I was in school.
@TheAcer46663 жыл бұрын
Both the statement of the question and the proof given are a little sloppy. First up, it doesn't state what set n lives in (e.g. n = log_2(12) satisfies 2^n - 1 prime, but n is not prime). It should say that n is in N (or Z). Then in the proof, n=ab is written with a,b in Z, so I guess the assumption is that n is in Z. In that case, we should really say a and b are not 1 OR -1. [7 = (-7)*(-1), for example] But with a, b possibly negative, you can't then use the factorisation rule given below. So a better thing to do would be to assume n is positive, pick a, b from N, then the proof is alright. Deal with the case of n negative separately. C-
@Mathskylive3 жыл бұрын
This problem is nice about an arithmetic property: If 2^n-1 is prime then n is prime.
@chanchalkumar00013 жыл бұрын
Sir love from india
@navodalwickramawardhana90403 жыл бұрын
👍👍
@تيتانالصغيره-ك4ب3 жыл бұрын
I do not understand you because I am an Arab
@beyza20043 жыл бұрын
Luckily, math is an universal language :)
@aashsyed12773 жыл бұрын
@@beyza2004 yes
@Grizzly013 жыл бұрын
@arqam station But manages to post a comment in perfectly cromulent English?