What's more important than proving this thing is you gave a proper explanation of what a logical equivalent are🤦♂️ In my University the professor was just like read it this are formulas🤣
@dysphoricjoy Жыл бұрын
I have a test today and this confirmed I will be failing that exam.
@JustNormalHito5 ай бұрын
Same
@drinetorshorts2 ай бұрын
😂
@Salamanca-joroАй бұрын
Did u
@drinetorshortsАй бұрын
@@Salamanca-joro i got 23/30 DSGT IS EASY THOUGH🤣🤣
@Salamanca-joroАй бұрын
@@drinetorshorts I am taking this subject this semester and my first lesson was this week about this topic , idk this whole thing seems easy to me I hope it keeps being this way so i can get A 😂
@jewelleaniag1464 жыл бұрын
you know, my mind is like yeah okay i get it but what again? hahahaha
@abdulmateen76603 жыл бұрын
fr
@santhoshkumarr74463 жыл бұрын
Hi
@mariecriscaamud41303 жыл бұрын
ifyyyyy🤐
@maazfaridi59463 жыл бұрын
Same
@venusunbagcg61713 жыл бұрын
@@maazfaridi5946 hey are u studying in country where speaking native english
@jenweatherwax71135 жыл бұрын
You are amazing! Thank you for making this so clear and easy to understand!
@advaithkumar5966 Жыл бұрын
for absorption law (a), another way to think is that either p or p and q needs to be true for the expression to be true. Hence if p is false, the expression has to be false and if p is true the expression has to be true. So its equivalent to p. Similar logic holds for (b)
@OG_Truth_Teller2 жыл бұрын
The answer for home work problem in Biconditonal Note: Symbols used ('^' and),('√' or),('->' conditional) and ('' Biconditonal) Q] ~(pq) = p~q Here is the solution ~(pq)= ~{(p->q) ^ (q->p)} Using demorgans law in RHS ~(p->q) √ ~(q->p) Using 5th stmt in conditional equivalence (p^~q) √ (q^~p) Let s=p , r=~q So, (s^r) √ (~s^~r) Using 3rd stmt in Biconditonal equivalence s r This is equal to "p~q" I think im correct Thank you
@smammahdi Жыл бұрын
Thanks man
@TheUnKnown666 Жыл бұрын
@@smammahdi teko kaise pta 🧐
@royalcanon7433 Жыл бұрын
Can you tell me how to prove that first biconditional statement
@OG_Truth_Teller Жыл бұрын
@@royalcanon7433 Hey buddy i think you missed this video on bi- conditional property in the playlist, here is the link of video below kzbin.info/www/bejne/m5mulWaBoq6Fidk Any way lemme help you out with simple example let us consider this example P: is a polygon with 4 equal sides Q: is a square So, if P is true and Q is true then the proposition is true If P is true and Q is false or P is false and Q is true then the proposition is false This seems a tricky one if P is false (not a polygon) and Q is false(not a square) This makes sense bcoz its not a square since its not a polygon I hope it helps ,Good luck 🎉
@lynnewang8813 Жыл бұрын
Is (p^~q) = (~q^p) ?
@GKNaidu-hb5zv2 жыл бұрын
now this is the kind of stuff which is complicated and simple at the same time due to this channel !!!!!
@anjali-dasila2 жыл бұрын
Negation(p implies q) equivalence p and negation of q Using (p implies q) equivalence to negation of p or q Negation ( negation of p or q) equivalence p and negation of q Then use de Morgan rule P and negation of q is equivalence to p and negation of q
@subhalaxmiaran3367 Жыл бұрын
Thanks yaaa
@Domenic3675 жыл бұрын
I just want to say THANK YOU!! You`re doing a great job on your videos, keep up the good work!
@PetitePhillyLife5 жыл бұрын
Better explanation then the one my professor gave or what's in the trash book they made us buy
@Mujahed.3 жыл бұрын
Same situation bro
@hetaeramancer3 жыл бұрын
how much bro
@hariszaib27283 жыл бұрын
can anyone explain that in proving the absorption law, when he took p as common why did he change the signs.. like ^ to or and or to ^ .. time 5:36
@kurmasaradhi8724 Жыл бұрын
@@hariszaib2728 As mentioned here p^1 =p, so the 4th step can be written as (p^1)\/(p^q). Then by taking p as common by distributive law, we get p^(1 \/q)
@002dd21 күн бұрын
Loll, sammee
@enasgeravi43722 жыл бұрын
شكرا و جزاك الله خيرا
@serra73793 жыл бұрын
Your voice is like Rajesh Koothrappali’s. Thank you for video
@theophilus_pato5 жыл бұрын
Wow have had a great understanding of everything.Thanks for the good work.
@yannmergezs2820Ай бұрын
P this p that imma drop this major brah
@bringhappiness38622 жыл бұрын
Really helpful and yes I have done my home work ☺️😁 Thank you sir 😊
@F_F9F3 жыл бұрын
احسنت الشرح جدا بسيط وواضح ❤️
@ayaayucha53102 жыл бұрын
🥰🥰🥰
@QasimNizam-mk5px Жыл бұрын
❤
@snotface86 жыл бұрын
Great video! I loved how you went in depth and proofed all logical equivalences!
@gobindaadhikari33193 жыл бұрын
Sir, please post the solution to homework problems in the description box so that we can verify or modify our solution
@abe22er Жыл бұрын
what is the link of the homework?
@lakshmi113510 ай бұрын
@@abe22er it is given the end of video
@Liamlefe5 жыл бұрын
In last question ~(pq)=p~q proved and it is also = ~pq Just check anybody please
@PositivePulse288 Жыл бұрын
Amazing way of teaching...
@helptech1642 Жыл бұрын
Your teaching is so nice or understanding thank
@bozeiky4 жыл бұрын
For the homework #5 I got, -(p -> q) == -(-p v q) {Conditional Law} == - -p^-q {DeMorgans Law} == p^-q {Double Negation Law} Please let me know if this is right or how I did!
@rgbkedits1373 ай бұрын
This is correct
@thirstymosha11473 ай бұрын
you are so much better than my lecturer thanks for existing
@miriamDev4 жыл бұрын
Thank you Neso Academy, detailed explanation, but I have a very confusing question and quiet difficult to break it down, don't know if you can help out
@yasserfathelbab15342 жыл бұрын
lol so you're just whining or what
@yasserfathelbab15342 жыл бұрын
that's not how math works
@raannnggggaaaaa2 жыл бұрын
@@yasserfathelbab1534 chill out man
@yasserfathelbab15342 жыл бұрын
@@raannnggggaaaaa Two years now and not a soul knows what the question is.....
@muhibali205 Жыл бұрын
@@yasserfathelbab1534 still now I didn't get answers of that questions from homework.
@jennysanchez8224 жыл бұрын
For the homework #4 involving bi-conditional statements like the following: "-(p q) = p -q " For this one I broke it like this "(-p -> -q) or (-q -> -p) = (p-> -q) (-q-> p) . Based on the Double negate law, " (-p-> -q) or (-q-> -p) is True as well as (p->-q) (-q-> p) which are True because no matter what if p is false it doesn't matter if q is False or True, p->q will always be TRUE. This is why they are equivalent. Any one want to give suggestions if I'm the right track here?
@jerrinjose96333 жыл бұрын
i think you r r18
@hariszaib27283 жыл бұрын
can anyone explain that in proving the absorption law, when he took p as common why did he change the signs.. like ^ to or and or to ^ .. time 5:36
@shadow34912 жыл бұрын
@@hariszaib2728 it wasn't p as common it was p^p=p
@AidahBlessed-z7mАй бұрын
How can I master these laws and how hey are applied
@rezmir71156 жыл бұрын
Very simple yet effective explanation. Thanks a lot!
@subhradipsaha95184 жыл бұрын
Last question. NOT (p biconditional q) is equivalent to (p biconditional NOT q) NOT (p biconditional q) = NOT ((NOT p AND NOT q ) OR (p AND q)) [Biconditional into implication into combination of NOT, AND, OR] = (NOT p OR NOT q) AND (p OR q) [DeMorgan's Law] = (NOT p OR NOT q) AND (NOT(NOT q) OR p) [Double Negation Law] = (p implies NOT q) AND ( NOT q implies p) [Implication] = p biconditional NOT q [Biconditional]
@offlinemoe3 жыл бұрын
Hey bro Can you text me on instagram pls This is my acc ha_a_21.11
@arichullai56263 жыл бұрын
can you explain this line = NOT ((NOT p AND NOT q ) OR (p AND q)) [Biconditional into implication into combination of NOT, AND, OR]
@subhradipsaha95183 жыл бұрын
@@arichullai5626 A B is logically equivalent to (A -> B) AND (B -> A) which is logically equivalent to (NOT A AND NOT B) OR ( A AND B)
@arichullai56263 жыл бұрын
@@subhradipsaha9518 thank you for that but A-> B is logically equivalent to NOT A OR B.........
@muhammadhilwan74068 ай бұрын
from where u got the (NOT(NOT q) OR p)?
@mjlplofs4hpn2533 жыл бұрын
The solution of first h.w. is :¬(p_>q). Because we took ¬ out and replaced ^ with _>, So we equivalent the RHS and the LHS.
@BinshadRayhan8 сағат бұрын
very simple explain
@dimabraginskiy29696 ай бұрын
pls check if i am correct with 5th homework task: NOT(p=>q) p and NOTq We can transform it as following: (we can do a double negation of both sides) NOT(NOT(p=>q)) NOT(p and NOTq) (p => q) (NOTp or q) (right side is the same as 1st conditional statement) please correct me!
@realhumanoid13233 жыл бұрын
for the 5th : we have ¬( p -> q ) = p ^ ¬ q ; ................1 we know from the 1st proof that : ( p -> q ) = ¬ p ν q , therefore substituting this same value to : [ ¬( p -> q ) ] we get : ¬( ¬ p v q ) = p ^ ¬ q ; ..............................2 Now by DeMorgan's Law : ¬( p v q ) = ¬ p ^ ¬ q by applying demorgan's law and solving the 2nd equation we'll get : ( p ^ ¬ q ) = ( p ^ ¬ q ) hence therefore, LHS = RHS
@Oogwood Жыл бұрын
This is the hardest part of logic
@DRASERUS Жыл бұрын
Would be nice if you put the correct answer to your question in description so i can confirm if my answer is correct or not.
@Factsmotivation2002Ай бұрын
10:24 Not(p->q) =p^not(q) =not(not(q) -> not(p)) =not(p->q) where p=not(q) and q=not(p) Therefore, Hence Proved!!!
@jennysanchez8224 жыл бұрын
For the Homework (5): is -(p->q) = p and -q are equivalent because if you break it down like following:" -p implies - q" makes that statement True while "p and -q" makes the statement TRUE. Because they both have true values makes the statement true and equivalent. Is that why? Can someone explain to me or check if I'm the right track? Thank you in advance!
@debjyotiray83644 жыл бұрын
You have applied theoretical knowledge of the understanding of the equivalence, I guess it's correct!! The more simpler way that I used is to use De Morgan's laws that sir initially explained to prove it and it becomes just a three liner proof! Hoping that helped... Welcome in advance
@Gupatik3 жыл бұрын
now you've said that "-p" implies "-q", and that's true so from there we can agree that "q" implies "p" which is also correct. but the problem is that we can't return back and say that "-q" and "p" are equivalent, the equivalent here is p and "q'' . the homework itself for me is not logical WHY, coze we have -(pq) which is also (pq) but not (p-q). let's make things even more simple, we have "q" and "p", both are equivalent then we say that "p" and "-q" are also equivalent which make no sense like if "a" is "a" then we say "a" is "-a which stands here for another alphabet different from a" and that's not so true.
@shubikshashubi49713 жыл бұрын
Thank you so much for explaing the laws which is more helpful in solving the problem thanks a lot
@azharosaaf20344 жыл бұрын
Thank you so much 💕💕💕💕💕💕💕 I am from India and I enjoy to see your vedios.
@MathPlusAi Жыл бұрын
Thanks for your best tutorials!!🤩
@dagim66252 жыл бұрын
great video!
@Justinlabry5 жыл бұрын
I solved the HW and understood why there is no posting of it. haha :D To give you a hint, it is pretty lengthy. yo. My humble respects to the teacher.
@SazzadRashid7 ай бұрын
Can u plz give me the solution
@mochi4647 ай бұрын
omg its so complicated
@ayaayucha53102 жыл бұрын
Thank you so much ❣❣💯💯❣❣ I am from Algeria and I enjoy to see your vedios🥰🥰🥰
@pubggaming58892 жыл бұрын
Hii, wr is Algeria..
@pavanyendluri3 жыл бұрын
Thank you Neso Academy
@fatimalmasri59434 жыл бұрын
Dude i owe u !! ❤ thanks Subscribed !
@thirumeniparthiban62612 жыл бұрын
Excellent !! Excellent!! nothing else to say. You please do some video lectures ( even paid ) on model checking buchi automata etc.,
@СанжарАлманов-т3с Жыл бұрын
love your videos man, really helpful, thank you veru much!!!
@TowerBooks31924 жыл бұрын
You just saved me. Thank you for this video
@AmandaSim-u7s Жыл бұрын
At 5:36 I'm confused as to what it means "taking p as a common". I see that p is converted to 1 and I'm confused as to how that happened
@MrVrtex Жыл бұрын
Exactly my thought. The 4th step and the question is exactly same. How does this work?
@arhamkhxn Жыл бұрын
I also have this confusion @nesoacademy please help!
@norzuraika38924 жыл бұрын
Thanks sir.. Really helpfull 👍 👍
@AidahBlessed-z7mАй бұрын
Sir, prove for me -(PvQ)^-p)=>Q
@enasgeravi43722 жыл бұрын
Thanks
@juskonajak70614 күн бұрын
I don't quite get how you solve the equivalences of biconditionals differently. The solution to number two is different from number three. In number two, you negated both p and q, but in number three you negated only p for the same conditions.
@jamesmccloud75353 жыл бұрын
Thank you! This helped me a lot!
@VenusRahaf3 жыл бұрын
Thank you so much
@studentperfect81353 жыл бұрын
Thank you sir
@mprl8193 жыл бұрын
Thanks, this cleared things up for me
@venusunbagcg61713 жыл бұрын
Hey which level(9/10/11grand) subject is this
@nitishgautam57287 ай бұрын
5:37 😂 4th line is same place where you started to prove formula . By the way I like Boolean notation more , it's easier because we are familiar with + , .
@houssam51805 жыл бұрын
Better than in college. Thank you.
@victoriarumbidzaimhlanga49343 жыл бұрын
Thank you....
@sirichandana6054 жыл бұрын
Explanation is well done 👍 sir
@vaishnavimendre4693 жыл бұрын
Thank you sir🙌🏻
@anshikayadav78574 жыл бұрын
Sir can you please answer the explanation of question 5th (homework) in biconditionals.??
@skycirnsnewaccount92252 жыл бұрын
Thank you Indian Guy(i dunno what's your race is) but it really help me a lot since I have midterm exam today
@sherazakbar65447 ай бұрын
Are we prove them with the help of truth table??
@1832naipa3 жыл бұрын
Thanks sir alot😀
@carlosdiaz99988 ай бұрын
5:38 What does "Taking P as common" mean?
@vandanapathak84534 ай бұрын
Do you know now?explain me
@jamunajai21654 жыл бұрын
Thank you very much sir.... clearly understood...... Excellent explanation.....
@mimischly25472 жыл бұрын
Awesome man
@tonoyislam7184 жыл бұрын
Thank u so much for help me
@Momin_7315 күн бұрын
I get all of this but do i have to memorize these laws
@esuendalewdebebe79915 жыл бұрын
can you solve to me (p^q)/bi implies p and p=>q/implies in logical equivalence if p,q and r use a truth table please ?
@BCS__NimraHashmi3 жыл бұрын
Outstanding
@JudeGussman5 жыл бұрын
Thank you!
@harishdasari48086 жыл бұрын
great explanation
@Hahahahahahahhahahahhahahshsha Жыл бұрын
If only the test is this easy
@cautionseaman Жыл бұрын
“Right”
@humerashaikh84022 жыл бұрын
Thank you sir all of my doubts finally got cleared
@anilover51595 жыл бұрын
What laws should I use when I now have 3 propositions? for example... ~(p^q^~r) ^~(~p^q^~r) ^~(~p^~q^~r)
@deemaha86454 жыл бұрын
LIFE SAVER!!!!
@Ududushshdhssj Жыл бұрын
is there any sites where we can practice these questions
@spug033 жыл бұрын
Thank you so much my dude
@venusunbagcg61713 жыл бұрын
In which class is this subject covered?
@kunalgoher50082 жыл бұрын
@@venusunbagcg6171 betch cse in sem 4
@khansaparween72094 жыл бұрын
Superbbbb sir...
@nicholasstamatakis Жыл бұрын
Awesome explanation!
@Somerandomnessvvv2 жыл бұрын
Made me realize how simple it is.
@dhananjaysangle79822 жыл бұрын
HELPFUL VDO
@viveksingh73886 жыл бұрын
Sir please upload signals & systems lecture
@zulaikhazainuddin27734 жыл бұрын
Before this im still confusing about law of logical equivalences. Watching this before exam
@kleur33562 жыл бұрын
Can I ask if a distributive can be two statements only, something like (p v q) ^ ¬p ≡ ¬((p v q) →p)?
@hosamessa90693 жыл бұрын
Yoo thanks 👏
@TitanTubs2 жыл бұрын
9:45 my dummy self would have put a double negation on the p. But I guess it is commutive(you can switch the p's and q's) Would it be wrong to do that? Is it only logically equivalent if you give it no one that isn't already negated?
@dresscheme2940 Жыл бұрын
where did he get the ~(~q v ~p)?
@Uaiaoahq3 жыл бұрын
So the three vertical lines is "="
@arshidbhat73585 жыл бұрын
Well That was Cool
@anythingbeyondlimit83982 жыл бұрын
thank you very much dude, I am just learning this for myself as I have graduated from school long time ago. but bruh! wat in the multiverse is this shoot! Aliens laugh at us with all these nonsensical convention we brought. I am learning and laughing at this!
@soniaverma78704 жыл бұрын
Tysm:)
@trollface1994 Жыл бұрын
DawDology !
@nomannoman24924 жыл бұрын
Super
@slater-cguy4 жыл бұрын
5. ~(p -> q) = p ^ ~q ~(~p v q) p ^ ~ q De Morgan
@story_time_bd25124 жыл бұрын
Can u tell what will be (not p V T) Is it true? what will be the ans of (not p V not q V q)