Portfolio Beta Weighting with Python

  Рет қаралды 7,997

QuantPy

QuantPy

Күн бұрын

Пікірлер: 14
@damneddude8299
@damneddude8299 2 жыл бұрын
Thanks for all the videos, its like a goldmine of knowledge!! Thanks again a lot!!
@carlosarrieta1145
@carlosarrieta1145 3 жыл бұрын
Amazing video! I did saw this stuff at college but never with practical examples.
@John-xi2im
@John-xi2im 6 ай бұрын
awesome tutorial! Learnt a lot of new stuff ,thanks a lot mate!
@victorl.mercado5838
@victorl.mercado5838 2 жыл бұрын
Regarding beta weighting for options, I prefer to beta weight my gammas and neutralize the unbalanced beta weighted delta by going long or short enough shares of the underlying to balance the portfolio delta. That way, the deltas are more likely to remain balanced as the market moves.
@luisluiscunha
@luisluiscunha 2 жыл бұрын
I really enjoyed this: you explain things very well, thank you.
@kaiwang2924
@kaiwang2924 Жыл бұрын
Good time with Coefficient, Matrix and Linear Regression.
@Cleusimacedo
@Cleusimacedo 7 күн бұрын
adorei❤ 21:04 21:08 21:13
@gian_piano
@gian_piano 2 жыл бұрын
amazing as always!
@Karemovv1998
@Karemovv1998 Жыл бұрын
I tried to make ^SPX market the column 0 but it didn't work because yahoo finance makes the list in alphabet order Thank you for the video, it was informative.
@TheAwesomeTigi
@TheAwesomeTigi 2 жыл бұрын
This Video is amazing, I like your channel
@slad1984
@slad1984 2 жыл бұрын
Thanks for the video but in beta formula don’t you should divide covariance of market and stock to variance of market instead of covariance of market to itself
@GG-pv2dn
@GG-pv2dn 2 жыл бұрын
What if the inverse doesnt exist?
@EMSxJIZL
@EMSxJIZL 2 жыл бұрын
Assuming you're talking about step 4c, and you have not found an answer to your question already. Given this approach uses the Least Squares analytical solution to estimate the beta coefficients, it is fair to assume that all Least Squares assumptions have been checked. For your question, the linear independence assumption implies X is of full column rank. Given we know (assume) X is of full column rank and that X^T.X is square, it rules out the possibility of it being singular and, therefore, X^T.X is always invertible.
@victorl.mercado5838
@victorl.mercado5838 2 жыл бұрын
Love the video. I wish I came across a similar video when I struggled to figure it out a few years ago. I use the pandas covariance and variance methods to calculate my betas, but it's effectively the same as your Step 4a example. I modified the code to conform to your format. See code below: def rolling_beta(df): m = df.iloc[:, 0] beta = [] for ind, col in enumerate(df): if ind > 0: # stock returns are indexed by ind s = df.iloc[:, ind] # Calculate covariance matrix between stock and market covariance = s.cov(m) # Calculate market variance variance = m.var() beta.append(covariance/variance) return pd.Series(beta, df.columns[1:], name='Beta') beta = rolling_beta(log_returns)
Человек паук уже не тот
00:32
Miracle
Рет қаралды 3,3 МЛН
Solving real world data science tasks with Python Pandas!
1:26:07
Keith Galli
Рет қаралды 1,5 МЛН
What Is Beta Weighting & Why You Should Use It!
16:42
TradeOptionsWithMe
Рет қаралды 7 М.
Building An Option Portfolio (without overthinking)
35:53
tastylive
Рет қаралды 52 М.
16. Portfolio Management
1:28:38
MIT OpenCourseWare
Рет қаралды 6 МЛН
Computing beta and expected return using CAPM in Python
19:45
Hamid Boustanifar
Рет қаралды 5 М.
Python for Finance: Are stock returns normally distributed?
24:57
Inferring the Aggressor using Options Data
25:54
QuantPy
Рет қаралды 12 М.