raabe 4K

  Рет қаралды 13,258

Michael Penn

Michael Penn

Күн бұрын

Пікірлер
@arahatchikkatur1906
@arahatchikkatur1906 Жыл бұрын
Another way of approaching this integral is to think of the integral as a function of a and take the derivative. From the fundamental theorem of calculus, f'(a) = ln(G(a+1)) - ln(G(a)) = ln(a), where G(a) denotes the gamma function at a. Integrating, we see that f(a) = a ln(a)-a+C. To find the constant, note that f(0) = C = int [0,1] ln(G(x)) dx. By making the substitution x -> 1-x, we see that 2C = int [0,1] ln(G(x)) + ln(G(1-x)) dx. Since ln(G(x))+ln(G(1-x)) = ln(G(x)G(1-x)), we can make use of the reflection formula, making the integral become int [0,1] ln(pi)-ln(sin(pi x)) dx, which is evaluated in the video.
@БорисНазаров-х7к
@БорисНазаров-х7к Жыл бұрын
This proof is much better:)
@shadow-ht5gk
@shadow-ht5gk Жыл бұрын
Brilliant
@bot24032
@bot24032 Жыл бұрын
minor mistake at the end, it's alna-a+0.5ln(2π)
@Jack_Callcott_AU
@Jack_Callcott_AU Жыл бұрын
True!
@tolberthobson2610
@tolberthobson2610 Жыл бұрын
VERY TRUE!!
@Nzargnalphabet
@Nzargnalphabet Жыл бұрын
I graphed it, it was off to the right by one
@Nzargnalphabet
@Nzargnalphabet Жыл бұрын
All you needed to do was add one to every a individually
@zalut_sky
@zalut_sky Жыл бұрын
raabe 4K indeed just kidding, thank you for the video
@s4623
@s4623 Жыл бұрын
1:31 to 6:24 - a much simpler way of doing all of that would be the integral of something from a to a+1 = (integral of same function from 1 to a+1) - (integral of same function from 1 to a), and then substitute the terms, then use the fact the gamma function has the same value at 0 and at 1 to line up everything.
@spiderjerusalem4009
@spiderjerusalem4009 Жыл бұрын
substitute what terms?
@coc235
@coc235 Жыл бұрын
4:45 this argument is fundamentally wrong. For example x^2+y^2 also has 'nice symmetry built into it', but its partial derivatives are 2x and 2y respectively, which makes them not equal. What's crucial here is the linearity of the term x+y
@Happy_Abe
@Happy_Abe Жыл бұрын
I was confused by this statement too
@davidutoob
@davidutoob Жыл бұрын
A clearer argument is that ∂x and ∂y are equal for any function of the form f(x+y) because they're both equal to f'(x+y).
@Jacob.Peyser
@Jacob.Peyser Жыл бұрын
He was obviously referring to the symmetry upon differentiation. Don't berate the guy because you don't comply with his (valid) notion of symmetry.
@Happy_Abe
@Happy_Abe Жыл бұрын
@@davidutoob thank you this helps explain this a lot!
@khoozu7802
@khoozu7802 Жыл бұрын
I didn't understand. I think he just change y to x and change x to y
@neomooooo
@neomooooo Жыл бұрын
I really like the idea of the zeroth integral. It’s a nice hallmark.
@wolframhuttermann7519
@wolframhuttermann7519 Жыл бұрын
If someone can prove that a certain integral value where the borders are computable numbers (including +- infinity) is non-computable, that would be great.
@rainerzufall42
@rainerzufall42 Жыл бұрын
Isn't that ln[sqrt(2Pi) (a/e)^a)] ? Using log rules, this is = ln a^a - ln e^a + ln sqrt(2Pi) = a ln a - a + 0.5 ln(2Pi) (the corrected result from above)
@manucitomx
@manucitomx Жыл бұрын
Gnarly and fun. Just what I wanted for my Saturday morning. Thank you, professor.
@anonym95642
@anonym95642 Жыл бұрын
this reminds me of the Stirling approximation
@DmitriStarostin
@DmitriStarostin Жыл бұрын
for a = 2 the value is 1.61, close to the value of i in the integral of (1 / ((1 + x power i) power i)) dx on 0 to infinity (which you did earlier) in power 2/3, as if it were the Kepler's law for the lunar ellipse axis' libration. So this Raabe integral is a measure of temporal distance between the two subsequent harmonics of the lunar librations showing up over time (but quite a long time, several centuries).
@ManyWaysMA
@ManyWaysMA Жыл бұрын
Interesting how the square root of 2pi shows up in the answer. I wonder if this has got something to do with Stirling’s approximation…?
@skylardeslypere9909
@skylardeslypere9909 Жыл бұрын
As you can switch the two integrals around, I think you can also switch limits and integrals, meaning you could probably replace Gamma(x) by Stirlings approximation, and pull the limit outside (ln is continuous).
@Noam_.Menashe
@Noam_.Menashe Жыл бұрын
I think it's just because you get that a lot from the Gamma function (see Wallis product). So it's more so a different symptom of the same thing.
@riadsouissi
@riadsouissi Жыл бұрын
Or more directly, substitute x by x+a, use Feynman trick to derive the integral in respect to a, then integrate within the integral in respect to x to get log(gamma(a+1)/gamma(a))=log(a). Integrate to get back thrle original integral to get alog(a) - a + c. Constant c is defined when a=0 which is a known integral that can be solved using inversion formula of the gamma function.
@demenion3521
@demenion3521 Жыл бұрын
that's actually a really neat integral problem. i enjoyed that the most in a while
@goodplacetostop2973
@goodplacetostop2973 Жыл бұрын
12:26
@vinesthemonkey
@vinesthemonkey Ай бұрын
raabe 4k
@enire8477
@enire8477 Жыл бұрын
Doesn't this only show its true for a>=1, and still need to be done for the case: 0
@Happy_Abe
@Happy_Abe Жыл бұрын
Michael, just wanted to ask when the Math Major videos will continue?
@eytansuchard8640
@eytansuchard8640 Жыл бұрын
It should be a*ln(a)-a = Integral(ln(y)dy) from 0 to a. The limit of y*ln(y)-y -> 0 when y->0.
@Redfox0928
@Redfox0928 Жыл бұрын
Isn't that method also called Feynman's trick ? Or am I getting confused ?
@riadsouissi
@riadsouissi Жыл бұрын
Yes, euivalent more or less.
@Noam_.Menashe
@Noam_.Menashe Жыл бұрын
Don't you love symmetric functions?
@minwithoutintroduction
@minwithoutintroduction Жыл бұрын
رائع جدا كالعادة
@VaradMahashabde
@VaradMahashabde Жыл бұрын
Raabe 4K
@BurningShipFractal
@BurningShipFractal Жыл бұрын
On the thumbnail, it says “Rabbe’s Formula”, not “Raabe’s Formula”. it’s probably a mistake
@LeonhardEulerShades
@LeonhardEulerShades Жыл бұрын
Is that how you pronounce Raabe? I've been saying Ra-bay for a while 😅
@MDMajor
@MDMajor Жыл бұрын
Raabe was Swiss so it's probably more like "Rah-buh"
@nasseerkassim1771
@nasseerkassim1771 Жыл бұрын
V good
@abdoshaat3304
@abdoshaat3304 Жыл бұрын
You are difficult teacher you jumping the steps of the solution not algorithmize the steps It is better for you to watch how math 505 develops his solutions
@patricius6378
@patricius6378 Жыл бұрын
As a huge fan of both Penn and maths505, I personally don't see either of them "jumping the steps" harder than the other, it's just that they use different methods (I can't recall maths505 ever using pictures for switching up double integrals, or using many double integrals at all) and sometimes assume different prerequesites, which is fine.
A Wallis-type product for e.
27:42
Michael Penn
Рет қаралды 17 М.
gamma reflection via double and contour integration.
20:39
Michael Penn
Рет қаралды 14 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 763 М.
cos within log within log -- an integration spectacular!
18:13
Michael Penn
Рет қаралды 17 М.
a general integral family
14:01
Michael Penn
Рет қаралды 16 М.
The strange cousin of the complex numbers -- the dual numbers.
19:14
Math News: The Fish Bone Conjecture has been deboned!!
23:06
Dr. Trefor Bazett
Рет қаралды 212 М.
One of my favorite identities.
20:47
Michael Penn
Рет қаралды 28 М.
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
a combination of classic problem types
18:12
Michael Penn
Рет қаралды 10 М.
a great limit problem.
16:58
Michael Penn
Рет қаралды 14 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН