amazing problem keep it up without substitution we have to choose generally either Ferrari or Descartes' method for solving biquadratic equation.we put y^2 = 20 -x y = x(x+10) y^2+y = x^2+9 x+20 4 y^2+4 y = 4 x^2+36 x+80 4 y^2+4 y = (2x+9)^2-1 (2 y +1)^2 = (2x+9)^2 now we put y = x^2+10x 2 x^2+20 x +1 = 2 x +9 , 2 x^2 + 20 x +1 = - 20 x - 9 x^2+9 x-4= 0 , x^2+20 x+5 = 0 rest follows at once.
@RashmiRay-c1y5 күн бұрын
Let x = -a-5. Then √(a+25)=(a+5)(a-5) = a^2-25. Squaring both sides, a^4-50a^2-a-600=0. Since the cubic term is missing, we write (a^2+pa+q)(a^2-pa+r)=0 where qr=600, q+r-p^2=-50 and p(r-q)=-1. Then p=1, q=-24, r=-25 > (a^2+a-24)(a^2-a-25)=0 > a= 1/2[1 +/-√101], 1/2[-1+/-√97] Of these, only a=1/2[1+√101] and a = -1/2[√97+1] satisfy √(a+25)=a^2-25. So, x=1/2[√97 - 9], -1/2[11 +√101].
@Quest36695 күн бұрын
Let √20-x= t solving ewn gives (t^2-t-25)(t^2+t+24)= 0 Gives x= (-11+-√101)/2; (-9+-√97)/2 but valid only sols X=( -11-√101)/2; (√97-9)/2
@key_board_x5 күн бұрын
[√(20 - x)]/(10 + x) = x → where: (20 - x) ≥ 0 → x ≤ 20 and where: (10 + x) ≠ 0 → x ≠ - 10 √(20 - x) = x.(10 + x) [√(20 - x)]² = [x.(10 + x)]² 20 - x = x².(10 + x)² 20 - x = x².(100 + 20x + x²) 20 - x = 100x² + 20x³ + x⁴ x⁴ + 20x³ + 100x² + x - 20 = 0 → the aim is to eliminate terms to the 3rd power Let: z = x - (b/4a) → where: b is the coefficient for x², in our case: 20 a is the coefficient for x³, in our case: 1 x⁴ + 20x³ + 100x² + x - 20 = 0 → let: x = z - (20/4) → let: x = z - 5 (z - 5)⁴ + 20.(z - 5)³ + 100.(z - 5)² + (z - 5) - 20 = 0 (z - 5)².(z - 5) + 20.(z - 5)².(z - 5) + 100.(z² - 10z + 25) + z - 5 - 20 = 0 (z² - 10z + 25).(z² - 10z + 25) + 20.(z² - 10z + 25).(z - 5) + 100z² - 1000z + 2500 + z - 5 - 20 = 0 (z⁴ - 10z³ + 25z² - 10z³ + 100z² - 250z + 25z² - 250z + 625) + 20.(z³ - 5z² - 10z² + 50z + 25z - 125) + 100z² - 1000z + 2500 + z - 5 - 20 = 0 (z⁴ - 20z³ + 150z² - 500z + 625) + 20.(z³ - 15z² + 75z - 125) + 100z² - 1000z + 2500 + z - 5 - 20 = 0 z⁴ - 20z³ + 150z² - 500z + 625 + 20z³ - 300z² + 1500z - 2500 + 100z² - 1000z + 2500 + z - 5 - 20 = 0 z⁴ - 50z² + z + 600 = 0 ← no more term to the 3rd power It would be interesting to have 2 squares on the left side (because power 4 and power 2) Let's rewrite the equation by introducing a variable "λ" which, if carefully chosen, will produce 2 squares on the left side. Let's tinker a bit with z⁴ as the beginning of a square: z⁴ = (z² + λ)² - 2λz² - λ² z⁴ - 50z² + z + 600 = 0 → where: z⁴ = (z² + λ)² - 2λz² - λ² (z² + λ)² - 2λz² - λ² - 50z² + z + 600 = 0 (z² + λ)² - [2λz² + λ² + 50z² - z - 600] = 0 → let's try to get a second member as a square (z² + λ)² - [z².(2λ + 50) - z + (λ² - 600)] = 0 → a square into […] means that Δ = 0 → let's calculate Δ Δ = (- 1)² - 4.[(2λ + 50).(λ² - 600)] → then, Δ = 0 1 - 4.[(2λ + 50).(λ² - 600)] = 0 (2λ + 50).(λ² - 600) = 1/4 2.(λ + 25).(λ² - 600) = 1/4 (λ + 25).(λ² - 600) = 1/8 λ³ - 600λ + 25λ² - 15000 = 1/8 λ³ + 25λ² - 600λ - 15000 - (1/8) = 0 λ³ + 25λ² - 600λ - (120001/8) = 0 λ = - 49/2 Restart (z² + λ)² - [z².(2λ + 50) - z + (λ² - 600)] = 0 → where: λ = - 49/2 [z² + (- 49/2)]² - [z².(2.{- 49/2} + 50) - z + ({- 49/2}² - 600)] = 0 [z² - (49/2)]² - [z².(- 49 + 50) - z + ({2401/4} - 600)] = 0 [z² - (49/2)]² - [z² - z + (1/4)] = 0 ← we can recognize a square [z² - (49/2)]² - [z - (1/2)]² = 0 → recall: a² - b² = (a + b).(a - b) [z² - (49/2) + z - (1/2)].[z² - (49/2) - z + (1/2)] = 0 (z² + z - 25).(z² - z - 24) = 0 First case: (z² + z - 25) = 0 z² + z - 25 = 0 Δ = 1 - (4 * - 25) = 101 z = (- 1 ± √101)/2 → recall: x = z - 5 x = [(- 1 ± √101)/2] - 5 x = (- 10 - 1 ± √101)/2 x = (- 11 ± √101)/2 First solution: x = (- 11 + √101)/2 ← rejected because the condition Second solution: x = (- 11 - √101)/2 Second case: (z² - z - 24) = 0 z² + z - 24 = 0 Δ = 1 - (4 * - 24) = 97 z = (1 ± √97)/2 → recall: x = z - 5 x = [(1 ± √97)/2] - 5 x = (- 10 + 1 ± √97)/2 x = (- 9 ± √97)/2 Third solution: x = (- 9 + √97)/2 Fourth solution: x = (- 9 - √97)/2 ← rejected because the condition Solution = { (- 11 - √101)/2 ; (- 9 + √97)/2 }
@StaR-uw3dc4 күн бұрын
Nice solution. The equation √(25-y)=y²-25 can be solved also as follows: Let t=25: √(t-y)=y²-t After squaring we get the quadratic in t: t²-(2y²+1)t+y⁴+y=0 with delta = (2y²+1)²-4(y⁴+y)=(2y-1)² and two roots: t=y²+y or t=y²-y+1. After back substitution t=25 we get two quadratics in y: y²+y-25=0 and y²-y-24=0.