The cards referring to other videos and your channel are obstructing our view of the last page, at 8:48. It's easy to correct that in retrospect by going to KZbin studio and dragging the cards down to the bottom. You've left ample room below for those cards so it should be easy. Thanks for the video!
@trojanleo12317 күн бұрын
Agreed. Hoping the content creator heeds your advice.
@richardhole842912 күн бұрын
@@trojanleo123I simply touched the screen and they went away.
@conanthecribber9 күн бұрын
@@richardhole8429 not on my PC they didn't.
@sudiptoits6 күн бұрын
Easy question We could do, f(x) = x^2-f(x-1) So f(41) = 41^2 - f(40) = 41^2-40^2 + f(39) and so on, so f(41) = 41^2-40^2+39^2-38^2… + 15^2-14^2+13^2-12^2+f(11) = (41-40)(41+40) + (39-38)(39+38) +… + (13-12)(13+12)+ f(11) = (81+77+73+…+25) + 50 Using AP formulae you can calculate this to be 845
@sonicbreaker0018 күн бұрын
If you write the first few terms like f(1), f(2), f(3), ... in terms of f(0), then you can immediately see that the general solution is: f(N) = N(N+1)/2 + [(-1)^N]*f(0). Now use f(11) = 50 to obtain f(0) = 16. Therefore, f(N) = N(N+1)/2 + [(-1)^N]*16. Thus, f(41) = 41*42/2 - 16 = 845.
@paulortega531717 күн бұрын
If the domain is restricted to integers.
@florianbasier17 күн бұрын
@@paulortega5317 true, but we only care about integers here
@Patrik692015 күн бұрын
Wolfram alpha has a nasty solution for this _gasping for air_ if the unknow function f(x)+f(x-1)=x^2 the function f(x) is f(x) = c (-1)^(x - 1) + 1/2 (-1)^(x - 1) ((-1)^(x + 1) x^2 + (-1)^(x + 1) x), havent plotted this so i dont know what the constant C are (pretty sure it can be simplified alot) .. it is the solution to f(x)=x^2-f(x-1), where the function is unknown edit: seems C is (x^2)/2 + x/2 -> C=(x^2+x)/2 = x(x+1)/2
@alexandreocadiz996714 күн бұрын
@@florianbasier yes but it seems that f(x) = x(x+1)/2 + 16*cos(x*pi) is a valid answer to the equation for real numbers.
@pavelsolaris19016 күн бұрын
Excellent job
@rickdesper6 күн бұрын
It's easy to do this in < 15 seconds using Excel. 😀 And spreadsheet manipulation is a useful skill to develop. I like solutions where it's explained why you take the steps you do, instead of just saying "look what happens if we try to make an alternating sum using pairs of consecutive values of f()". It would be useful to set up a difference equation, i.e. f(n+1) = (n+1)^2 - f(n). This would quickly and naturally lead to the kind of alternating sum you want.
@Blaqjaqshellaq17 күн бұрын
Another approach you can take is to consider that f(13) - f(12)=12 + 13, and so on for these sums. So f(41) - 50=12 + 13 + 14 +... + 40 + 41. The triangular sum 1 + 2 + 3 +... +n=n*(n+1)/6, so f(41) - 50=(41*42)/2 - (11*12)/2=861 - 66=795, so f(41)=795 + 50=845.
@次野先生7 күн бұрын
f(x+1)-f(x-1)=2x+1를 구하고 x=12,14,"""40를 차례로 대입하여 변변더하면 f(41)-f(11)=25+29+""81 이하 우변 등차수열의 합795 답845
@wannabeactuary0112 күн бұрын
Loved this. Admittedly when you see things where you want to shout at the screen then that makes it even better. My moment is at 6:03. You dd all the hard work and showed: 12^2 - 13^2 + 14^2 -15^2 +... +40^2 - 41^2 = -(12 +13 +14 +15 +... + 40 + 41)
@ZannaZabriskie18 күн бұрын
Correct, but: DO NOT SUM the couples! If you don’t, you have: 12+13+14+15+…+41+50 That’s is S(41)-S(11) + 50 easy peasy!
@yuvalmagen1006 күн бұрын
beautiful
@dan-florinchereches489218 күн бұрын
Well this looks hairy to start with. But if you pair up the function and say (1) f(x)=x^2-f(x-1) then substituting the expression for f(x-1) back f(x)=x^2-(x-1)^2+f(x-2)= 2n-1 + f(x-2) this means f(13)=2*13-1 +f(11) f(15)=2*15-1 +f(13) .... f(41)=2*41-1+f(39) number of terms =(41-11)/2 = 15 adding everything up f(13)+f(15)+...+f(41)=f(11)+f(13)+...+f(39)+ 2*(13+15+...+41) -1*15 reducing like terms f(41)=2*(13+14+15+...+40+41-14-16-18-...-40)-15=2*(1+2+3+...+41-1-2-...-12-2*(7+8+9+...+20))-15=2*(42*41/2-13*12/2-2*(1+2+...+20-1-2-...-6))-15=2*(41*21-13*6-2*(21*20/2-6*7/2))-15=2*(861-78-2*(210-21))-15=2*(783-2*189)-15=2*405-15=810-15=795 edit : I missed the f(11)=50 from the total which should be 845. Totally forgot about that way of calculating the arithmetic series using first and last term. Makes sense to keep if on top of your mind... most exercises back in the day were mindless use of formula for sum from a0 to an
@saeedjaffer53218 күн бұрын
It is clear that the function is a polynomial f(x) =ax^2+bx+c solving for a, b, c a=b=1/2, c=0 then f(x) =1/2x^2+1/2x then f(11)=66 not 50, as given. Then f(41)=861. If f(x) +f(x-1)was=x^2-32 then f(11)=50 is correct and f(41)=845
@boguslawszostak178417 күн бұрын
But is NOT a polynomial
@cutcrew274315 күн бұрын
For this sequence we could set f(1) to -15. It is interesting to see that f(41) is nearly the same for small starting values. Here are some tuples of f(1), f(41) and f(1000): (-15, 845, 4934), (0, 860, 4949), (1, 861, 4950), (10, 870, 4959).
@mathpro9263 күн бұрын
Nice video
@adandap17 күн бұрын
This is equivalent to a difference equation a_(n+1) + a_n = n^2, which can be solved by multiplying by (-1)^(n+1) and summing from 11 to 41.
@alipourzand649917 күн бұрын
Lots of nice methods in this one! Hope it will make cents! ☺
@xinpingdonohoe397811 күн бұрын
Cents as in a small amount of money?
@MrRyanroberson116 күн бұрын
I originally came up with a solution that's only a little off the true answer, but I think my method is still a useful demonstration: f(x) + f(x-1) = x^2 f(x+1) + f(x) = x^2 + 2x + 1 => f(x+1) - f(x-1) = 2x+1 now we offset by 1 to find f(x) = f(x-2) + 2x - 1 f(x-2) = f(x-4) + 2(x-2) - 1 => f(x) = f(x-4) + 4x - 6 and repeating this strategy of expanding the function on the right side to keep doubling the gap... f(x) = f(x-8) + 8x - 28 f(x) = f(x-16) + 16x - 120 f(x) = f(x-32) + 32x - 496 therefore, in particular, f(43) = f(11) + 32x43 - 496 = 930 and finally f(43) = f(41) + 85; 930-85 = 845
@konstantinvorontsov981113 күн бұрын
f(x) = x(x+1)/2 + 16(-1)^x is a short form for f(2z) = 2z^2 + z + 16 f(2z+1) = 2z^2 + 3z - 15 Interesting that no common formula for f(x) exists for real x, only for integer x
@downrightcyw19 сағат бұрын
How do you find out the general form of f(x) = x(x+1)/2 + 16(-1)^x ?
@eli37co17 күн бұрын
From the general equation you can say f(x) is ax^2+bx + c. a=0.5, b=0.5 anc c= 0. There for f(x) is 0.5x^2 + 0.5x. f(11) is 66 not 50.
@hasanpezuk875713 күн бұрын
Yes question is wrong f(11) = 66 and (50 + 16) f(41) = 861 (845 + 16 )
@GolumTR11 күн бұрын
How do you know this is the unique function such that f(x) + f(x-1) =x^2 ?
@rickdesper6 күн бұрын
@@hasanpezuk8757 Question is wrong?
@Mediterranean8118 күн бұрын
f(x) + f(x-1) = x^2 f(x) + f(x+1) = x^2 + 2x + 1 Subtract f(x+1)-f(x+1) = 2x + 1 Divide by 2 f’(x) = x+0.5 f(x) = (x^2 + x)/2 + c f(11) = 66 + c 50 - 66 = c -16 = c So f(x) = (x^2 + x - 32)/2 f(41) = (41^2 + 41 - 32)/2 = 845
@saeedjaffer53218 күн бұрын
If f(x) =(x^2+x-32)/2 then f(x-1)=(x^2-x-32)/2 and f(x) +f(x-1)=x^2-32 not x^2 only. This is due to the mistake of f(11)=50 as given . It should be 66. There's no need to give it. We can assume f(x) is a polynomial of x and solving to have f(x) =(x^2+x)/2. Then f(11)=66
@RashmiRay-c1y18 күн бұрын
You are assuming that1/2[ f(x+1) -f(x-1)] = [f(x+1)-f(x-1)]/{(x+1)-(x-1)] = df/dx which is not necessarily true. It works out in this case.
@abhirupkundu277817 күн бұрын
@@RashmiRay-c1y Yea, it works only if the denominator approached zero. In this case, it was approaching two if we checked the limit, and hence, this guy's approach was mathematically wrong.
@boguslawszostak178417 күн бұрын
Subtract f(x+1)-f(x+1) = 2x + 1 ...really? f(x+1)-f(x-1) = 2x + 1 You don’t even know if such a differentiable function exists (and actually it doesn’t), yet you’re already calculating its derivative! But your formula f(x+1)-f(x-1) = 2x + 1 is promising; don't give up!
@pavelsolaris19016 күн бұрын
This is incorrect reasoning
@timeonly140123 сағат бұрын
Given f(x) + f(x-1) = x² Solving, we get f(x) = x² - f(x-1) Given f(11) = 50. Then: f(12) = 12² - 50 f(13) = 13² - 12² + 50 f(14) = 14² - 13² + 12² - 50 .... f(41) = (41² - 40²) + (39² - 38²) +-... + (13² - 12²) + 50 = 50 + Sum [from k=6 to 20] { (2k+1)² - (2k)² } = 50 + Sum [from k=6 to 20] { (4k² + 4k + 1) - (4k²) } = 50 + Sum [from k=6 to 20] { 4k + 1 } = 50 + 4* Sum [from k=6 to 20] { k } + Sum [from k=6 to 20] { 1 } = 50 + 4* Sum [from k=6 to 20] { k } + 15 = 65 + 4* Sum [from k=6 to 20] { k } = 65 + 4 * ( Sum [from k=1 to 20] { k } - Sum [from k=1 to 5] { k } ) = 65 + 4 * [ (20)(21)/2 - (5)(6)/2 ] = 65 + 4 * ( 210 - 15 ) = 65 + 780 = 845 Done!!
@alexandreocadiz996714 күн бұрын
This problem smells more like an arithmetic progression problem than a functional equation one. But it was fun anyway ^^
@zerosir185216 күн бұрын
1. If f(x)=(-x²+13x+7) then find f(0), f(1), f(2), ......,f(5). 2. If f(x)=(x²+x+11) then find f(0), f(1), f(2), ......,f(9). 3. If f(x)=(x²+x+41) then find f(0), f(1), f(2), ......,f(39). You will get some clue.
f(11) +f(10) = 121 f(12) + f(11) = 144 f(12) - f(10) = 144-121 = 23 f(13) + f(12) = 169 f(13) - f(11) = 169 - 144 = 25 f (x) - f(x-2) = 2x-1 f (13) = 25 + f(11) = 25 + 50 = 75 f(x) = 2x -1 + f (x-2) f (15) = 29 + f(13) = 29 + 75 = 104 f(x) = 4x -6 +f(x-4) f (15) = 54 + f(11) = 54+ 50 = 104 f(x) = nx +f(x-n) - n(n-1)/2 ls not viable f(19) = 70 + 104 =174 by checking with n = 3 and x = 15 we have f(15) = 45 +f (12) -3 so f(12) = 104 - 42 = 62 f(11) = 50 , this is given f(10) is computed from 121 and 50 . It is 71. Checking validity of a formula for even values of x, because they are haywire. f(12) is computed from 144 and 50. It is 94. f(12) - f(10) = 23 = 94 -71 To be rigorous , it is safe to prove by induction what is intuitive here. These snail steps are safe also if double-checked. 🐌🐌🐌🐌🐌🐌 f(17) = 4x17-6 + f(13) = 62 + 75 = 137 (confessing I slipped a bit here) f( 14) is computed from 196- f(13) . f(14) = 196 - 75 = 121 It is also f(14) = 56-6 + f(10) = 50 +71 = 121 But it is f(41) which is the goal. f(41) = 41x4-6 + f(37) It is 158 + 4x37-6 + f(33). It is 8 x 39-12 +f(33)= It is 8x 41 - 28 +f(33) Now jumping down in eights: 🐇🐇🐇🐇🐇🐇🐇🐇 f(33) = 33 x 8 -28 + f(25) f(25) = 25x8 -28 + f(17) = 200-28 + 137 = 309 f(33) = 264 -28 + 314 = 236+309 = 545 f(41) = 8x41-28 + 550 = 328-28 +545 . It is 845 Could develop more algebra to this series, but I am going to follow this podcast now that the kangaroo is about to bound away 🦘 bye-bye
@zzjdkjx6 күн бұрын
f(x)=ax^2+bx+c ax^2+bx+c+a(x-1)^2+b(x-1)+c=x^2 2ax^2+(2b-2a)x+2c-b+a=x^2 2a=1,2b-2a=0,2c-b+a=0 a=1/2,b=1/2,c=0 f(x)=x^2/2+x/2 f(41)=41X41/2+41/2=861 f(41)=861 OK