An Interesting Functional Equation

  Рет қаралды 5,908

SyberMath Shorts

SyberMath Shorts

Күн бұрын

Пікірлер: 24
@spelunkerd
@spelunkerd 22 сағат бұрын
The cards referring to other videos and your channel are obstructing our view of the last page, at 8:48. It's easy to correct that in retrospect by going to KZbin studio and dragging the cards down to the bottom. You've left ample room below for those cards so it should be easy. Thanks for the video!
@trojanleo123
@trojanleo123 12 сағат бұрын
Agreed. Hoping the content creator heeds your advice.
@sonicbreaker00
@sonicbreaker00 Күн бұрын
If you write the first few terms like f(1), f(2), f(3), ... in terms of f(0), then you can immediately see that the general solution is: f(N) = N(N+1)/2 + [(-1)^N]*f(0). Now use f(11) = 50 to obtain f(0) = 16. Therefore, f(N) = N(N+1)/2 + [(-1)^N]*16. Thus, f(41) = 41*42/2 - 16 = 845.
@paulortega5317
@paulortega5317 14 сағат бұрын
If the domain is restricted to integers.
@florianbasier
@florianbasier 10 сағат бұрын
@@paulortega5317 true, but we only care about integers here
@alipourzand6499
@alipourzand6499 15 сағат бұрын
Lots of nice methods in this one! Hope it will make cents! ☺
@adandap
@adandap 6 сағат бұрын
This is equivalent to a difference equation a_(n+1) + a_n = n^2, which can be solved by multiplying by (-1)^(n+1) and summing from 11 to 41.
@Blaqjaqshellaq
@Blaqjaqshellaq 10 сағат бұрын
Another approach you can take is to consider that f(13) - f(12)=12 + 13, and so on for these sums. So f(41) - 50=12 + 13 + 14 +... + 40 + 41. The triangular sum 1 + 2 + 3 +... +n=n*(n+1)/6, so f(41) - 50=(41*42)/2 - (11*12)/2=861 - 66=795, so f(41)=795 + 50=845.
@Mediterranean81
@Mediterranean81 Күн бұрын
f(x) + f(x-1) = x^2 f(x) + f(x+1) = x^2 + 2x + 1 Subtract f(x+1)-f(x+1) = 2x + 1 Divide by 2 f’(x) = x+0.5 f(x) = (x^2 + x)/2 + c f(11) = 66 + c 50 - 66 = c -16 = c So f(x) = (x^2 + x - 32)/2 f(41) = (41^2 + 41 - 32)/2 = 845
@saeedjaffer532
@saeedjaffer532 21 сағат бұрын
If f(x) =(x^2+x-32)/2 then f(x-1)=(x^2-x-32)/2 and f(x) +f(x-1)=x^2-32 not x^2 only. This is due to the mistake of f(11)=50 as given . It should be 66. There's no need to give it. We can assume f(x) is a polynomial of x and solving to have f(x) =(x^2+x)/2. Then f(11)=66
@RashmiRay-c1y
@RashmiRay-c1y 18 сағат бұрын
You are assuming that1/2[ f(x+1) -f(x-1)] = [f(x+1)-f(x-1)]/{(x+1)-(x-1)] = df/dx which is not necessarily true. It works out in this case.
@abhirupkundu2778
@abhirupkundu2778 15 сағат бұрын
@@RashmiRay-c1y Yea, it works only if the denominator approached zero. In this case, it was approaching two if we checked the limit, and hence, this guy's approach was mathematically wrong.
@boguslawszostak1784
@boguslawszostak1784 8 сағат бұрын
Subtract f(x+1)-f(x+1) = 2x + 1 ...really? f(x+1)-f(x-1) = 2x + 1 You don’t even know if such a differentiable function exists (and actually it doesn’t), yet you’re already calculating its derivative! But your formula f(x+1)-f(x-1) = 2x + 1 is promising; don't give up!
@eli37co
@eli37co 13 сағат бұрын
From the general equation you can say f(x) is ax^2+bx + c. a=0.5, b=0.5 anc c= 0. There for f(x) is 0.5x^2 + 0.5x. f(11) is 66 not 50.
@dan-florinchereches4892
@dan-florinchereches4892 Күн бұрын
Well this looks hairy to start with. But if you pair up the function and say (1) f(x)=x^2-f(x-1) then substituting the expression for f(x-1) back f(x)=x^2-(x-1)^2+f(x-2)= 2n-1 + f(x-2) this means f(13)=2*13-1 +f(11) f(15)=2*15-1 +f(13) .... f(41)=2*41-1+f(39) number of terms =(41-11)/2 = 15 adding everything up f(13)+f(15)+...+f(41)=f(11)+f(13)+...+f(39)+ 2*(13+15+...+41) -1*15 reducing like terms f(41)=2*(13+14+15+...+40+41-14-16-18-...-40)-15=2*(1+2+3+...+41-1-2-...-12-2*(7+8+9+...+20))-15=2*(42*41/2-13*12/2-2*(1+2+...+20-1-2-...-6))-15=2*(41*21-13*6-2*(21*20/2-6*7/2))-15=2*(861-78-2*(210-21))-15=2*(783-2*189)-15=2*405-15=810-15=795 edit : I missed the f(11)=50 from the total which should be 845. Totally forgot about that way of calculating the arithmetic series using first and last term. Makes sense to keep if on top of your mind... most exercises back in the day were mindless use of formula for sum from a0 to an
@vafamoshtagh5130
@vafamoshtagh5130 14 сағат бұрын
Solving for f(x) + f(x-1) = x^2, I get f(x) = (x^2+x)/2, resulting in f (11) = 66 not 50. f (41) = 861 not 845. Any ideas?
@ZannaZabriskie
@ZannaZabriskie 16 сағат бұрын
Correct, but: DO NOT SUM the couples! If you don’t, you have: 12+13+14+15+…+41+50 That’s is S(41)-S(11) + 50 easy peasy!
@saeedjaffer532
@saeedjaffer532 21 сағат бұрын
It is clear that the function is a polynomial f(x) =ax^2+bx+c solving for a, b, c a=b=1/2, c=0 then f(x) =1/2x^2+1/2x then f(11)=66 not 50, as given. Then f(41)=861. If f(x) +f(x-1)was=x^2-32 then f(11)=50 is correct and f(41)=845
@boguslawszostak1784
@boguslawszostak1784 12 сағат бұрын
But is NOT a polynomial
@btb2954
@btb2954 Күн бұрын
f(x)=x^2-f(x-1) f(12)=12^2-50 f(13)=13^2-12^2+50 >> (13-12)(13+12)+50 >> 13+12+50 f(15)= 15^2-14^2+13^2-12^2+50 >> (15-14)(15+14)+(13-12)(13+12)+50 >> 15+14+13+12+50 this continues for every odd n so f(41) = 41+40+39...+12+50 = 41(42)/2 - 11(12)/2 + 50 = 845
@boguslawszostak1784
@boguslawszostak1784 7 сағат бұрын
"by brutal force", but works
@mircoceccarelli6689
@mircoceccarelli6689 Күн бұрын
f( 41 ) = 50 + S( 14 ) S( n ) = g( 0 ) + g( 1 ) + ... + g( n ) g( n ) = 25 + 4n , 0
A Radical That Does Not Stop
8:48
SyberMath Shorts
Рет қаралды 9 М.
Solving An Interesting System of Equations
11:20
SyberMath Shorts
Рет қаралды 2,9 М.
ПРЯМОЙ ЭФИР. Золотой мяч France Football 2024
4:41:06
Family Love #funny #sigma
00:16
CRAZY GREAPA
Рет қаралды 32 МЛН
Human vs Jet Engine
00:19
MrBeast
Рет қаралды 184 МЛН
2 MAGIC SECRETS @denismagicshow @roman_magic
00:32
MasomkaMagic
Рет қаралды 28 МЛН
Another Nice Equation With Exponents
8:41
SyberMath Shorts
Рет қаралды 1,7 М.
Sum from 1 to infinity of 1/(k^2+1)
7:16
mathemagical
Рет қаралды 3,9 М.
Kepler’s Impossible Equation
22:42
Welch Labs
Рет қаралды 178 М.
The crisis in physics is real: Science is failing
12:45
Sabine Hossenfelder
Рет қаралды 387 М.
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
Something Strange Happens When You Keep Squaring
33:06
Veritasium
Рет қаралды 7 МЛН
Why is there no equation for the perimeter of an ellipse‽
21:05
Stand-up Maths
Рет қаралды 2,2 МЛН
the greatest functional equation of all time.
7:48
Michael Penn
Рет қаралды 40 М.
An Interesting Functional Equation
9:15
SyberMath
Рет қаралды 3 М.
ПРЯМОЙ ЭФИР. Золотой мяч France Football 2024
4:41:06