An Interesting Functional Equation

  Рет қаралды 48,993

SyberMath Shorts

SyberMath Shorts

Күн бұрын

Пікірлер: 78
@spelunkerd
@spelunkerd 18 күн бұрын
The cards referring to other videos and your channel are obstructing our view of the last page, at 8:48. It's easy to correct that in retrospect by going to KZbin studio and dragging the cards down to the bottom. You've left ample room below for those cards so it should be easy. Thanks for the video!
@trojanleo123
@trojanleo123 17 күн бұрын
Agreed. Hoping the content creator heeds your advice.
@richardhole8429
@richardhole8429 12 күн бұрын
​@@trojanleo123I simply touched the screen and they went away.
@conanthecribber
@conanthecribber 9 күн бұрын
@@richardhole8429 not on my PC they didn't.
@sudiptoits
@sudiptoits 6 күн бұрын
Easy question We could do, f(x) = x^2-f(x-1) So f(41) = 41^2 - f(40) = 41^2-40^2 + f(39) and so on, so f(41) = 41^2-40^2+39^2-38^2… + 15^2-14^2+13^2-12^2+f(11) = (41-40)(41+40) + (39-38)(39+38) +… + (13-12)(13+12)+ f(11) = (81+77+73+…+25) + 50 Using AP formulae you can calculate this to be 845
@sonicbreaker00
@sonicbreaker00 18 күн бұрын
If you write the first few terms like f(1), f(2), f(3), ... in terms of f(0), then you can immediately see that the general solution is: f(N) = N(N+1)/2 + [(-1)^N]*f(0). Now use f(11) = 50 to obtain f(0) = 16. Therefore, f(N) = N(N+1)/2 + [(-1)^N]*16. Thus, f(41) = 41*42/2 - 16 = 845.
@paulortega5317
@paulortega5317 17 күн бұрын
If the domain is restricted to integers.
@florianbasier
@florianbasier 17 күн бұрын
@@paulortega5317 true, but we only care about integers here
@Patrik6920
@Patrik6920 15 күн бұрын
Wolfram alpha has a nasty solution for this _gasping for air_ if the unknow function f(x)+f(x-1)=x^2 the function f(x) is f(x) = c (-1)^(x - 1) + 1/2 (-1)^(x - 1) ((-1)^(x + 1) x^2 + (-1)^(x + 1) x), havent plotted this so i dont know what the constant C are (pretty sure it can be simplified alot) .. it is the solution to f(x)=x^2-f(x-1), where the function is unknown edit: seems C is (x^2)/2 + x/2 -> C=(x^2+x)/2 = x(x+1)/2
@alexandreocadiz9967
@alexandreocadiz9967 14 күн бұрын
@@florianbasier yes but it seems that f(x) = x(x+1)/2 + 16*cos(x*pi) is a valid answer to the equation for real numbers.
@pavelsolaris1901
@pavelsolaris1901 6 күн бұрын
Excellent job
@rickdesper
@rickdesper 6 күн бұрын
It's easy to do this in < 15 seconds using Excel. 😀 And spreadsheet manipulation is a useful skill to develop. I like solutions where it's explained why you take the steps you do, instead of just saying "look what happens if we try to make an alternating sum using pairs of consecutive values of f()". It would be useful to set up a difference equation, i.e. f(n+1) = (n+1)^2 - f(n). This would quickly and naturally lead to the kind of alternating sum you want.
@Blaqjaqshellaq
@Blaqjaqshellaq 17 күн бұрын
Another approach you can take is to consider that f(13) - f(12)=12 + 13, and so on for these sums. So f(41) - 50=12 + 13 + 14 +... + 40 + 41. The triangular sum 1 + 2 + 3 +... +n=n*(n+1)/6, so f(41) - 50=(41*42)/2 - (11*12)/2=861 - 66=795, so f(41)=795 + 50=845.
@次野先生
@次野先生 7 күн бұрын
f(x+1)-f(x-1)=2x+1를 구하고 x=12,14,"""40를 차례로 대입하여 변변더하면 f(41)-f(11)=25+29+""81 이하 우변 등차수열의 합795 답845
@wannabeactuary01
@wannabeactuary01 12 күн бұрын
Loved this. Admittedly when you see things where you want to shout at the screen then that makes it even better. My moment is at 6:03. You dd all the hard work and showed: 12^2 - 13^2 + 14^2 -15^2 +... +40^2 - 41^2 = -(12 +13 +14 +15 +... + 40 + 41)
@ZannaZabriskie
@ZannaZabriskie 18 күн бұрын
Correct, but: DO NOT SUM the couples! If you don’t, you have: 12+13+14+15+…+41+50 That’s is S(41)-S(11) + 50 easy peasy!
@yuvalmagen100
@yuvalmagen100 6 күн бұрын
beautiful
@dan-florinchereches4892
@dan-florinchereches4892 18 күн бұрын
Well this looks hairy to start with. But if you pair up the function and say (1) f(x)=x^2-f(x-1) then substituting the expression for f(x-1) back f(x)=x^2-(x-1)^2+f(x-2)= 2n-1 + f(x-2) this means f(13)=2*13-1 +f(11) f(15)=2*15-1 +f(13) .... f(41)=2*41-1+f(39) number of terms =(41-11)/2 = 15 adding everything up f(13)+f(15)+...+f(41)=f(11)+f(13)+...+f(39)+ 2*(13+15+...+41) -1*15 reducing like terms f(41)=2*(13+14+15+...+40+41-14-16-18-...-40)-15=2*(1+2+3+...+41-1-2-...-12-2*(7+8+9+...+20))-15=2*(42*41/2-13*12/2-2*(1+2+...+20-1-2-...-6))-15=2*(41*21-13*6-2*(21*20/2-6*7/2))-15=2*(861-78-2*(210-21))-15=2*(783-2*189)-15=2*405-15=810-15=795 edit : I missed the f(11)=50 from the total which should be 845. Totally forgot about that way of calculating the arithmetic series using first and last term. Makes sense to keep if on top of your mind... most exercises back in the day were mindless use of formula for sum from a0 to an
@saeedjaffer532
@saeedjaffer532 18 күн бұрын
It is clear that the function is a polynomial f(x) =ax^2+bx+c solving for a, b, c a=b=1/2, c=0 then f(x) =1/2x^2+1/2x then f(11)=66 not 50, as given. Then f(41)=861. If f(x) +f(x-1)was=x^2-32 then f(11)=50 is correct and f(41)=845
@boguslawszostak1784
@boguslawszostak1784 17 күн бұрын
But is NOT a polynomial
@cutcrew2743
@cutcrew2743 15 күн бұрын
For this sequence we could set f(1) to -15. It is interesting to see that f(41) is nearly the same for small starting values. Here are some tuples of f(1), f(41) and f(1000): (-15, 845, 4934), (0, 860, 4949), (1, 861, 4950), (10, 870, 4959).
@mathpro926
@mathpro926 3 күн бұрын
Nice video
@adandap
@adandap 17 күн бұрын
This is equivalent to a difference equation a_(n+1) + a_n = n^2, which can be solved by multiplying by (-1)^(n+1) and summing from 11 to 41.
@alipourzand6499
@alipourzand6499 17 күн бұрын
Lots of nice methods in this one! Hope it will make cents! ☺
@xinpingdonohoe3978
@xinpingdonohoe3978 11 күн бұрын
Cents as in a small amount of money?
@MrRyanroberson1
@MrRyanroberson1 16 күн бұрын
I originally came up with a solution that's only a little off the true answer, but I think my method is still a useful demonstration: f(x) + f(x-1) = x^2 f(x+1) + f(x) = x^2 + 2x + 1 => f(x+1) - f(x-1) = 2x+1 now we offset by 1 to find f(x) = f(x-2) + 2x - 1 f(x-2) = f(x-4) + 2(x-2) - 1 => f(x) = f(x-4) + 4x - 6 and repeating this strategy of expanding the function on the right side to keep doubling the gap... f(x) = f(x-8) + 8x - 28 f(x) = f(x-16) + 16x - 120 f(x) = f(x-32) + 32x - 496 therefore, in particular, f(43) = f(11) + 32x43 - 496 = 930 and finally f(43) = f(41) + 85; 930-85 = 845
@konstantinvorontsov9811
@konstantinvorontsov9811 13 күн бұрын
f(x) = x(x+1)/2 + 16(-1)^x is a short form for f(2z) = 2z^2 + z + 16 f(2z+1) = 2z^2 + 3z - 15 Interesting that no common formula for f(x) exists for real x, only for integer x
@downrightcyw
@downrightcyw 19 сағат бұрын
How do you find out the general form of f(x) = x(x+1)/2 + 16(-1)^x ?
@eli37co
@eli37co 17 күн бұрын
From the general equation you can say f(x) is ax^2+bx + c. a=0.5, b=0.5 anc c= 0. There for f(x) is 0.5x^2 + 0.5x. f(11) is 66 not 50.
@hasanpezuk8757
@hasanpezuk8757 13 күн бұрын
Yes question is wrong f(11) = 66 and (50 + 16) f(41) = 861 (845 + 16 )
@GolumTR
@GolumTR 11 күн бұрын
How do you know this is the unique function such that f(x) + f(x-1) =x^2 ?
@rickdesper
@rickdesper 6 күн бұрын
@@hasanpezuk8757 Question is wrong?
@Mediterranean81
@Mediterranean81 18 күн бұрын
f(x) + f(x-1) = x^2 f(x) + f(x+1) = x^2 + 2x + 1 Subtract f(x+1)-f(x+1) = 2x + 1 Divide by 2 f’(x) = x+0.5 f(x) = (x^2 + x)/2 + c f(11) = 66 + c 50 - 66 = c -16 = c So f(x) = (x^2 + x - 32)/2 f(41) = (41^2 + 41 - 32)/2 = 845
@saeedjaffer532
@saeedjaffer532 18 күн бұрын
If f(x) =(x^2+x-32)/2 then f(x-1)=(x^2-x-32)/2 and f(x) +f(x-1)=x^2-32 not x^2 only. This is due to the mistake of f(11)=50 as given . It should be 66. There's no need to give it. We can assume f(x) is a polynomial of x and solving to have f(x) =(x^2+x)/2. Then f(11)=66
@RashmiRay-c1y
@RashmiRay-c1y 18 күн бұрын
You are assuming that1/2[ f(x+1) -f(x-1)] = [f(x+1)-f(x-1)]/{(x+1)-(x-1)] = df/dx which is not necessarily true. It works out in this case.
@abhirupkundu2778
@abhirupkundu2778 17 күн бұрын
@@RashmiRay-c1y Yea, it works only if the denominator approached zero. In this case, it was approaching two if we checked the limit, and hence, this guy's approach was mathematically wrong.
@boguslawszostak1784
@boguslawszostak1784 17 күн бұрын
Subtract f(x+1)-f(x+1) = 2x + 1 ...really? f(x+1)-f(x-1) = 2x + 1 You don’t even know if such a differentiable function exists (and actually it doesn’t), yet you’re already calculating its derivative! But your formula f(x+1)-f(x-1) = 2x + 1 is promising; don't give up!
@pavelsolaris1901
@pavelsolaris1901 6 күн бұрын
This is incorrect reasoning
@timeonly1401
@timeonly1401 23 сағат бұрын
Given f(x) + f(x-1) = x² Solving, we get f(x) = x² - f(x-1) Given f(11) = 50. Then: f(12) = 12² - 50 f(13) = 13² - 12² + 50 f(14) = 14² - 13² + 12² - 50 .... f(41) = (41² - 40²) + (39² - 38²) +-... + (13² - 12²) + 50 = 50 + Sum [from k=6 to 20] { (2k+1)² - (2k)² } = 50 + Sum [from k=6 to 20] { (4k² + 4k + 1) - (4k²) } = 50 + Sum [from k=6 to 20] { 4k + 1 } = 50 + 4* Sum [from k=6 to 20] { k } + Sum [from k=6 to 20] { 1 } = 50 + 4* Sum [from k=6 to 20] { k } + 15 = 65 + 4* Sum [from k=6 to 20] { k } = 65 + 4 * ( Sum [from k=1 to 20] { k } - Sum [from k=1 to 5] { k } ) = 65 + 4 * [ (20)(21)/2 - (5)(6)/2 ] = 65 + 4 * ( 210 - 15 ) = 65 + 780 = 845 Done!!
@alexandreocadiz9967
@alexandreocadiz9967 14 күн бұрын
This problem smells more like an arithmetic progression problem than a functional equation one. But it was fun anyway ^^
@zerosir1852
@zerosir1852 16 күн бұрын
1. If f(x)=(-x²+13x+7) then find f(0), f(1), f(2), ......,f(5). 2. If f(x)=(x²+x+11) then find f(0), f(1), f(2), ......,f(9). 3. If f(x)=(x²+x+41) then find f(0), f(1), f(2), ......,f(39). You will get some clue.
@ConradoPeter-hl5ij
@ConradoPeter-hl5ij 8 күн бұрын
f(x).+ f(x-1) = x² and, f(11)=50 f(41)= ? /////////////////////////////////////////////////// Also, there is another function who makes the same: g(x) + g(x-1) = x² => g(x) = x² - [g(x-1)] => g(x) = x² - [(x-1)² - g(x-2)] => g(x) = x² - (x-1)² + g(x-2) => g(x) = x² - (x-1)² + (x-2)² - g(x-3) => g(x) = x² - (x-1)² + (x-2)² - [(x-3)² -g(x-4)] => g(x) = x² - (x-1)² + (x-2)² - (x-3) +g(x-4) ... => g(x) = x² - (x-1)² + (x-2)² - f(x-3) + ... + (x-2k)² - (x-2k-1)²+...+ 3² - 2² + 1² -0² => g(x) = x² + (-1)¹(x-1)² + (-1)²(x-2)² + (-1)³(x-3)²+ (-1)⁴(x-4)²+...+(-1)ⁿ(x-n)²+...+ 3² -2² + 1²-0² _______________________ | => g(x)= Σ (-1)ⁿ(x-n)² | -------------- *obs.: x²-(x-1)² = 2x-1= x+(x-1) => g(x) = Σ(-1)ⁿ(x-n)² = x+(x-1)+(x-2)+(x-3)+(x-4)++...+5+4+3+2+1 => g(x) = Σ(-1)ⁿ(x-n)² = = (x+1)+(x+1)+(x+1)+(x+1)+(x+1) \____________________________/ (x/2) times => g(x) = Σ(-1)ⁿ(x-n)² = (x+1)(x/2) =Σ(n) this function do the same: ___________________ => | g(x) = [(x+1)(x/2)] | ------------ Demonstration: g(x) + g(x-1) = x² [(x+1)(x/2)]+{(x)[(x-1)/2]}=x² (x/2)[(x+1)+(x-1)]=x² (x/2)[2x]=x² x²=x² ////////////////////////////////////////////////// Coming back to the topic question: f(x) + f(x-1) = x² and, f(11)=50 f(11)+f(10)=11² f(10)=121-50 f(10)=71 and f(12)+f(11)=12² f(12)=144-50 f(12)=94 So, making a table base for f(x): x. f(x) 0. 16 1. -15 2. 19 3. -10 4. 26 5. -1 6. 37 7. 12 8. 52 9. 29 10. 71 11. 50 12. 94 13. 75 14. 121 15. 104
@ConradoPeter-hl5ij
@ConradoPeter-hl5ij 8 күн бұрын
Oops. I lose the anwser while trying to send the message. Wait, I will make that again
@ConradoPeter-hl5ij
@ConradoPeter-hl5ij 8 күн бұрын
let, l(x)= f(x) - g(x) f(x) + f(x-1)=x² g(x) + g(x-1)=x² =>f(x) + f(x-1) = g(x) + g(x-1) =>f(x) - g(x) = - [f(x-1) - g(x-1)] => l(x)= - l(x-1) this is intersting
@ConradoPeter-hl5ij
@ConradoPeter-hl5ij 8 күн бұрын
making a table base for g(x): x. g(x) 0. 0 1. 1 2. 3 3. 6 4. 10 5. 15 6. 21 7. 28 8. 36 9. 45 10. 55 11. 66 12. 78 13. 91 14. 105 15. 120
@ConradoPeter-hl5ij
@ConradoPeter-hl5ij 8 күн бұрын
making a table base for l(x): x. l(x) 0. 16 1. -16 2. 16 3. -16 4. 16 5. -16 ... ... 2k. 16 2k+1. -16 ... ... n (-1)ⁿ(16)
@ConradoPeter-hl5ij
@ConradoPeter-hl5ij 8 күн бұрын
Therefore, f(41) - g(41) = l(41) f(41) - {(41+1)(41/2)} = (-1)⁴¹(16) f(41) = (-16) + {(42)(41/2)} f(41) = -16 + {(21)(41)} f(41) = -16 + (20+1)(40+1) f(41) = -16 + [800+(20+40)+1] f(41) = -16 + [800+60+1] f(41) = -16 + 861 f(41) = 845 the anwser is f(41) = 845. 😊
@rushillakdawala4402
@rushillakdawala4402 13 күн бұрын
Elementary JEE level question.
@vafamoshtagh5130
@vafamoshtagh5130 17 күн бұрын
Solving for f(x) + f(x-1) = x^2, I get f(x) = (x^2+x)/2, resulting in f (11) = 66 not 50. f (41) = 861 not 845. Any ideas?
@eoyount
@eoyount 16 күн бұрын
You're missing a constant term. f(x) = (x^2 + x)/2 + C. Then when you plug in x=11, you get C = -16 and everything works out.
@mscardholder
@mscardholder 15 күн бұрын
​@@eoyountit is not constant, but alternating for even and odd. So it should be 16*(-1)^x or 16cos(pi*x)
@eoyount
@eoyount 15 күн бұрын
@@mscardholder You're right. I forgot it was a sum so the constants wouldn't cancel out. Need that alternating sign to get them to cancel.
@ChinoBlack24
@ChinoBlack24 15 күн бұрын
could someone tell whats the derivate of e^x?
@giuseppemalaguti435
@giuseppemalaguti435 15 күн бұрын
41^2-40^2+39^2-38^2.....+15^2-14^2+13^2-f(12)=81+77+73...+29+169-144+f(11)=81+77+73+....+25+50=845
@kateknowles8055
@kateknowles8055 12 күн бұрын
f(11) +f(10) = 121 f(12) + f(11) = 144 f(12) - f(10) = 144-121 = 23 f(13) + f(12) = 169 f(13) - f(11) = 169 - 144 = 25 f (x) - f(x-2) = 2x-1 f (13) = 25 + f(11) = 25 + 50 = 75 f(x) = 2x -1 + f (x-2) f (15) = 29 + f(13) = 29 + 75 = 104 f(x) = 4x -6 +f(x-4) f (15) = 54 + f(11) = 54+ 50 = 104 f(x) = nx +f(x-n) - n(n-1)/2 ls not viable f(19) = 70 + 104 =174 by checking with n = 3 and x = 15 we have f(15) = 45 +f (12) -3 so f(12) = 104 - 42 = 62 f(11) = 50 , this is given f(10) is computed from 121 and 50 . It is 71. Checking validity of a formula for even values of x, because they are haywire. f(12) is computed from 144 and 50. It is 94. f(12) - f(10) = 23 = 94 -71 To be rigorous , it is safe to prove by induction what is intuitive here. These snail steps are safe also if double-checked. 🐌🐌🐌🐌🐌🐌 f(17) = 4x17-6 + f(13) = 62 + 75 = 137 (confessing I slipped a bit here) f( 14) is computed from 196- f(13) . f(14) = 196 - 75 = 121 It is also f(14) = 56-6 + f(10) = 50 +71 = 121 But it is f(41) which is the goal. f(41) = 41x4-6 + f(37) It is 158 + 4x37-6 + f(33). It is 8 x 39-12 +f(33)= It is 8x 41 - 28 +f(33) Now jumping down in eights: 🐇🐇🐇🐇🐇🐇🐇🐇 f(33) = 33 x 8 -28 + f(25) f(25) = 25x8 -28 + f(17) = 200-28 + 137 = 309 f(33) = 264 -28 + 314 = 236+309 = 545 f(41) = 8x41-28 + 550 = 328-28 +545 . It is 845 Could develop more algebra to this series, but I am going to follow this podcast now that the kangaroo is about to bound away 🦘 bye-bye
@zzjdkjx
@zzjdkjx 6 күн бұрын
f(x)=ax^2+bx+c ax^2+bx+c+a(x-1)^2+b(x-1)+c=x^2 2ax^2+(2b-2a)x+2c-b+a=x^2 2a=1,2b-2a=0,2c-b+a=0 a=1/2,b=1/2,c=0 f(x)=x^2/2+x/2 f(41)=41X41/2+41/2=861 f(41)=861 OK
@cyruschang1904
@cyruschang1904 2 күн бұрын
f(x) + f(x - 1) = x^2 f(x) = x^2 - f(x - 1) f(12) = 12^2 - 50 f(13) = 13^2 - (12^2 - 50) f(14) = 14^2 - 13^2 + (12^2 - 50) f(15) = 15^2 - 14^2 + 13^2 - (12^2 - 50) f(41) = 41^2 - 40^2 + 39^2 ... + 13^2 - 12^2 + 50 = 81 + 77 + 73 + 69 + ... + 25 + 50 = (81 + 25)(15)/2 + 50 = 53(15) + 50 = 845
@oscaramorim7234
@oscaramorim7234 9 күн бұрын
👍💯
@btb2954
@btb2954 18 күн бұрын
f(x)=x^2-f(x-1) f(12)=12^2-50 f(13)=13^2-12^2+50 >> (13-12)(13+12)+50 >> 13+12+50 f(15)= 15^2-14^2+13^2-12^2+50 >> (15-14)(15+14)+(13-12)(13+12)+50 >> 15+14+13+12+50 this continues for every odd n so f(41) = 41+40+39...+12+50 = 41(42)/2 - 11(12)/2 + 50 = 845
@boguslawszostak1784
@boguslawszostak1784 17 күн бұрын
"by brutal force", but works
@sergiykanilo9848
@sergiykanilo9848 14 күн бұрын
f(x)=x^2-f(x-1)=x^2-(x-1)^2+f(x-2) =(x+(x-1))*(x-(x-1))+f(x-2) =x + (x-1) + f(x-2) f(41) =41+40+39+38+...+13+12+f(11) =(41+12)*(41-12+1)/2+50 =485
@FabienLegendre-v7u
@FabienLegendre-v7u 15 күн бұрын
f(x)=x²-f(x-1) f(41)=41²-f40) f(41)=41²-40²+f(39) f(41)=41²-40²+39²-38²+f(37) f(41)=41²-40²+.......+13²-12²+f(11) =(41-40)(41+40)+..+(13-12)(13+12) +f(11) =81+77+73+...+29+25+f(11) Un=U0+4n U0=25 81=25+4n........n=14 f(41)=(14+1)(81+25)/2+f(11) f(41)=795+f(11)=795+50=845 Or : .....f(n)=(n²+n+32×(-1)^n)/2
@dominiquelarchey-wendling5829
@dominiquelarchey-wendling5829 11 күн бұрын
f(x)+f(x-1)-f(x-1)-f(x-2)=x²-(x-1)² f(x)-f(x-2)=2x-1 g(x) := f(2x+1) g(x+1)-g(x)=4(x+1)+1 g(x+n)-g(x)=4(n(n+1)/2+nx)+n f(41)-f(11)=g(20)-g(5)=g(15+5)-g(5)=4(120+75)+15=795 f(41)=845
@phill3986
@phill3986 16 күн бұрын
👍👏❤️😊👏👍
@ArminVollmer
@ArminVollmer 17 күн бұрын
In Mathematica, it's a oneliner: f[x_]:=f[x]=x^2-f[x-1];f[11]=50;f[41] yields 845.
@mircoceccarelli6689
@mircoceccarelli6689 18 күн бұрын
f( 41 ) = 50 + S( 14 ) S( n ) = g( 0 ) + g( 1 ) + ... + g( n ) g( n ) = 25 + 4n , 0
@lifeofheaven-co4fr
@lifeofheaven-co4fr 6 күн бұрын
Omg crazy😊 🤪
@ConradoPeter-hl5ij
@ConradoPeter-hl5ij 8 күн бұрын
f(x) + f(x-1) = x² g(x) = (x+1)(x/2) also, g(x)+g(x-1)=x² then, f(x) + f(x-1) = g(x) - g(x-1) f(x) - g(x) = (-1)*[ f(x-1) - g(x-1)] making l(x)= f(x) - g(x) l(x) = (-1)*[ l(x-1) ] l((x) = -l(x-1) making f(0): f(0) =1² - ...(8² - {9² - [10² - (11² - 50)]}) f(0)= 1-(4-(9-(16-(25-(36-(49-(64-(81 -(100-(121-50)))))))))) => f(0)=16 searching l(0): l(0)=f(0) - g(0) l(0)=16 - 0 => l(0)=16 then, l(1) = -16 and l(2) = 16 ... therefore, l(n)= (-1)ⁿ(16) also, l(n)=f(n) - g(n) f(n)=l(n) + g(n) therefore, ■ f(n)=[(-1)ⁿ(16)] + [(n+1)(n/2)] making n=41 f(41)= -16 +[(42)(41/2)] f(41)= -16 +(21)(41) f(41)= -16 + 861 f(41)= 845
Another Nice Equation With Exponents
8:41
SyberMath Shorts
Рет қаралды 10 М.
Functional Equation
14:15
Prime Newtons
Рет қаралды 395 М.
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 8 МЛН
World’s strongest WOMAN vs regular GIRLS
00:56
A4
Рет қаралды 48 МЛН
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 115 М.
Can You Solve Apple's Split The Coins Riddle?
12:16
MindYourDecisions
Рет қаралды 288 М.
Solving a 'Harvard' University entrance exam
11:31
MindYourDecisions
Рет қаралды 332 М.
Великая теорема Ферма
19:22
Маткульт-привет! :: Алексей Савватеев и Ко
Рет қаралды 928 М.
What REALLY is e? (Euler’s Number)
23:18
Foolish Chemist
Рет қаралды 67 М.
Solving A Nice Ln Equation
9:03
SyberMath Shorts
Рет қаралды 1,3 М.
Do Complex Numbers Exist?
11:26
Sabine Hossenfelder
Рет қаралды 810 М.
A simple question most people get wrong
9:10
MindYourDecisions
Рет қаралды 209 М.
Зачем нужны синусы и косинусы?
18:33
LifeTensor
Рет қаралды 2,4 МЛН
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 8 МЛН