Radical Equation

  Рет қаралды 20,556

Prime Newtons

Prime Newtons

Күн бұрын

Пікірлер: 38
@Folorunsho3729
@Folorunsho3729 Жыл бұрын
The problem with math is that we introduce stranger to find our way out 😂 Just raise to the sixth power like that!? 😂
@isjosh8064
@isjosh8064 Жыл бұрын
It’s to get to a situation we know. You don’t want fractional powers on your equation so you raise it by 6
@PrimeNewtons
@PrimeNewtons Жыл бұрын
6 is the least common multiple of 2 and 3
@badrishkhanna7800
@badrishkhanna7800 Жыл бұрын
We can do without doing power 6 as well. Just use exponential rules on x^1/3 and x^1/2
@Folorunsho3729
@Folorunsho3729 Жыл бұрын
​@@badrishkhanna7800 buh you know X^1/2 is not really X^1/2 on the RHS
@BowlDrome
@BowlDrome 10 ай бұрын
If it works, it works fine. Although the solution itself is not efficient that it ought to be
@dianashakeri5869
@dianashakeri5869 10 ай бұрын
Wowww😍🤩
@treybell40501
@treybell40501 10 ай бұрын
The song choice 🔥
@cavanipro1138
@cavanipro1138 Жыл бұрын
I think that is better starting to multipy by 2,and get out the fraction
@jibblerino
@jibblerino Жыл бұрын
How did I get here? I don't even remember how to show my work with long division.
@rakeshkumar-ev1uw
@rakeshkumar-ev1uw Жыл бұрын
It can be solved in 1st step when you represent the underroot on the variable
@gauravbani-lv3yp
@gauravbani-lv3yp Жыл бұрын
Awesome 👍 sir
@AstroBrindan
@AstroBrindan Жыл бұрын
On 4th step, divide both sides by x^2
@PrimeNewtons
@PrimeNewtons Жыл бұрын
Never divide by a variable. Unless you know the variable cannot be zero
@AstroBrindan
@AstroBrindan Жыл бұрын
ooo didn’t know that, thank you
@tonystone10K
@tonystone10K 10 ай бұрын
Yeah, that risks getting rid of possible roots. Ie. If you had x^2 = x, and divided both sides by x, you'd only have x = 1. When in fact, x = 0 is also an answer.
@sbybill3271
@sbybill3271 10 ай бұрын
​@PrimeNewtons Something seriously wrong with this assumption. If x^2=0 then x=+_0 doesn't make sense
@nebula534
@nebula534 8 ай бұрын
@@sbybill3271y = x^2 only has one solution at y = 0, which is x = 0. +0 = 0 and -0 = 0. Otherwise would you say that when you substitute in the equation a = b - c, c = 0, a = b - 0 doesn’t make sense because you’re subtracting 0? No of course not.
@dannyjones4044
@dannyjones4044 Жыл бұрын
I never could understand algebra and I have 2 College degrees, science awesome, but Algebra, YIKES!!
@Valerius123
@Valerius123 3 ай бұрын
What part is yikes? Is it the abstraction that loses you? Or is it just remembering the rules?
@josiahsmith9657
@josiahsmith9657 7 ай бұрын
sees 1/2*x^1/2 *panics in lambert W function*
@qav_cnzo_
@qav_cnzo_ 7 ай бұрын
No that's not how it works 😂
@LukieReal
@LukieReal 6 ай бұрын
just divide by x^2 on both sides and remember 0 is a solution!
@PrimeNewtons
@PrimeNewtons 6 ай бұрын
If x=0 is a solution, you can't divide by x²
@LukieReal
@LukieReal 6 ай бұрын
oh you’re absolutely right! this is why i need ur videos for help, they are so insightful
@Valerius123
@Valerius123 3 ай бұрын
@@LukieReal Just be careful when you "cancel out" variables. Usually that results in erasing out solutions.
@potentialofprotonis3
@potentialofprotonis3 Ай бұрын
x^(1/3 - 1/2) = 1/2 x^(-1/6) = 1/2 1/x^(1/6) = 1/2 x^(1/6) = 2 x = 2^6
@ayomidediekola2505
@ayomidediekola2505 Жыл бұрын
x = 0 or x = 64
@The_Commandblock
@The_Commandblock Жыл бұрын
Ok so there is one thing that really annoys me. In another video you said that there is no solution for sqrt(x-1) = -2 because squareroots cant have negative solutions. I just accepted that and continued scrolling. But this video actually contradicts the other video by saying that sqrt(x) = x^½. Powering x to a half is asking "what number do i need to multiply by itself to get x" which is obviously true for positive and negative sqrt(x). The other video however states that squareroots can only have positive results. ... ... ... ... ... ... ... ... ...
@PY0ME
@PY0ME Жыл бұрын
no, a third root has solutions
@Kali-bs7oj
@Kali-bs7oj 10 ай бұрын
Square root x is always positive, only because we define it that way. Square root is exactly the same as half power, we need two of the same number that multiply to get x. But we disregard the negative solutions because the square root and half power are operations that we specifically define the solutions for. If you put x^1/2 or sqrt(x) into a graphing calculator, you’ll see the same graph of positive numbers, even though negative numbers multiplied by themselves can get the same value of x. This is because of how we define the operation
@natevailikit1536
@natevailikit1536 10 ай бұрын
You didn’t finish… don’t write it as x^2 = 0, or x-64 = 0. You didn’t simplify either factor. It should be x=0, x=64. Do not write “or” that means one of the solutions is correct and one is incorrect. Both solutions are correct.
@tamirerez2547
@tamirerez2547 Жыл бұрын
This is how the letter x looks like: ❌ Two straight lines crossing each other in the middle.
@ARCT1C_S3AL
@ARCT1C_S3AL Жыл бұрын
It’s a fancy way of writing so that when doing algebra, you don’t mess up the multiplication function with the x
@maxpie16
@maxpie16 Жыл бұрын
its just x in cursive
@Kali-bs7oj
@Kali-bs7oj 10 ай бұрын
brother is just learning about fonts and handwriting
@sbybill3271
@sbybill3271 10 ай бұрын
Wrong method. There is only one solution. When x^2=1/64x^3 then x=64. why make it so complicated?
Tetration equation
10:26
Prime Newtons
Рет қаралды 30 М.
Solving a septic equation
10:43
Prime Newtons
Рет қаралды 62 М.
Elza love to eat chiken🍗⚡ #dog #pets
00:17
ElzaDog
Рет қаралды 21 МЛН
龟兔赛跑:好可爱的小乌龟#short #angel #clown
01:00
Super Beauty team
Рет қаралды 128 МЛН
Players vs Pitch 🤯
00:26
LE FOOT EN VIDÉO
Рет қаралды 85 МЛН
Lambert W Function
14:35
Prime Newtons
Рет қаралды 663 М.
Factor ANY Quadratic Equation Without Guessing | Outlier.org
14:02
Addressing The Square-Root Confusion
14:32
Prime Newtons
Рет қаралды 18 М.
What Happens When You Solve This Math Problem?
12:04
infyGyan
Рет қаралды 2,7 М.
You don't understand Maxwell's equations
15:33
Ali the Dazzling
Рет қаралды 63 М.
How to prove monotone sequences
15:29
Prime Newtons
Рет қаралды 8 М.
1995 British Mathematics Olympiad problem
20:59
Prime Newtons
Рет қаралды 198 М.
A Vieta Problem
16:43
Prime Newtons
Рет қаралды 8 М.
How Math Becomes Difficult
39:19
MAKiT
Рет қаралды 280 М.
The Subfactorial is Hilarious
24:00
Wrath of Math
Рет қаралды 83 М.
Elza love to eat chiken🍗⚡ #dog #pets
00:17
ElzaDog
Рет қаралды 21 МЛН