Ramp response? More like "This information is tops!" Thanks again so much for making and sharing so many high-quality lectures.
@maruthimaruthi37204 жыл бұрын
What is full stack web development & full stack gaming development.? what we need in it.?
@francescoejlli89854 жыл бұрын
What's the name of the Digital blackboard you use?
@namratasaini20653 жыл бұрын
which is more stable.... impulse response or ramp response?
@sushrutmdhakate98742 жыл бұрын
Bhai , ek baat batana , inverse laplace nikalte waqt kabhi kabhi sir u(t) multiply karte hain aur kabhi nahi . To kisiko pata hain ki kis condition me u(t) multiply karna hota hai ?
@swastikmishra72092 жыл бұрын
u(t) ka value t>=0 time me 1 hota hai
@sushrutmdhakate98742 жыл бұрын
1. 1/CR x e ^ -t/CR 2. e^-t/CR -1 3. e^ -t/CR -1 -t
@lokendrasinghlodhi718 Жыл бұрын
Only first is correct ! plz do the caln again.
@bhanderi_anisha3 жыл бұрын
Can anyone explain answer of homework problem ??
@PunmasterSTP2 жыл бұрын
What did you get for the answers? If you let me know then I can double-check and explain.
@carultch Жыл бұрын
@@PunmasterSTP Start by finding the transfer function of the filter. It is a simple voltage divider where the output voltage is the input voltage times the ratio of impedances. Impedance of capacitor: Zc = 1/(C*s) Impedance of resistor: Zr = R Transfer function H(s) = Zc/(Zc + R) = 1/(C*s)/(1/(C*s) + R) = H(s) = 1/(C*R*s + 1) Output Y(s) = X(s)*H(s), where X(s) is the input Laplace transform. For an impulse, X_imp(s) = 1 For a unit step input, X_step(s) = 1/s For a unit ramp input, X_ramp(s) = 1/s^2 Thus, the output transfer functions are: Y_imp(s) = 1/(C*R*s + 1) Y_step(s) = 1/(C*R*s^2 + s) Y_ramp(s) = 1/(C*R*s^3 + s^2) Take inverse Laplace to find time-domain responses: y_imp(t) = e^(-t/(R*C))/(R*C) y_step(t) = u(t)*(1 - e^(-t/(R*C)) y_ramp(t) = R*C*e^(-t/(R*C)) - R*C*u(t) + t*u(t)
@PunmasterSTP Жыл бұрын
@@carultch Thanks for sharing! I mostly reply to comments like the original one because I want to encourage students to take the lead and try to figure out things first. I've tutored off and on for many years, so I think it's kind of from force of habit.
@carultch Жыл бұрын
@@PunmasterSTP No problem. I'm trying to come up with a transfer function that demonstrates the concept of steady state errors on step/ramp/parabolic inputs, and that eliminates its error when you have the proper number of stand-alone s-terms. The function in question: G(s) = 9/(s^2*(s + 2)) In a simple unity negative feedback loop, with the ramp input 1/s^3. This one simplifies nicely, but the exponential terms grow like crazy instead of decay to zero. The ones that don't simplify nicely, will stump Wolfram alpha. I found your video while trying to search for ideas on what I could do.
@PunmasterSTP Жыл бұрын
@@carultch That sounds good. Just to be clear, I’m not associated with Neso Academy. I just like to watch some of their videos.