Ramp Response of a System

  Рет қаралды 50,707

Neso Academy

Neso Academy

Күн бұрын

Пікірлер: 42
@harshvardhansingh8428
@harshvardhansingh8428 3 жыл бұрын
Impulse resp = 1/RC * e^ -t/RC * u(t) Step resp = 1 - e^ -t/RC ramp resp = t- RC + RC*e^ -t/RC
@eda-un8zr
@eda-un8zr 3 жыл бұрын
Hi, can you explain impulse response? I'm a little stuck and it can lead me.
@harshvardhansingh8428
@harshvardhansingh8428 3 жыл бұрын
@@eda-un8zr sure , I am here on Instagram @hv6537
@eda-un8zr
@eda-un8zr 3 жыл бұрын
@@harshvardhansingh8428 i wrote you but i guess you didnt see :) anyways, i solved it!! Thanks tho
@curiouscoder9566
@curiouscoder9566 3 жыл бұрын
yes correct
@BiswajitDas-bp7qr
@BiswajitDas-bp7qr 3 жыл бұрын
@@eda-un8zr please provide the solution 🙏 mail: wrickras143@gmail.com
@mathsop5583
@mathsop5583 4 жыл бұрын
Hi sir All subject's videos are best Thankyou 🙏
@Partha_swarnakar
@Partha_swarnakar 4 жыл бұрын
Egarly waiting for upcoming lectures💞
@karlm9584
@karlm9584 4 жыл бұрын
Very clear thank you
@bhukyaakhil86391
@bhukyaakhil86391 8 ай бұрын
Impulse resp = 1/RC * e^ -t/RC * u(t) Step resp = -1/RC*2(1 - e^ -t/RC) ramp resp = -1/RC(t-e^ -t/RC+1 )
@Семён-т9с7т
@Семён-т9с7т 4 жыл бұрын
Спасибо. Очень полезные видео.
@tanpreetsingh271
@tanpreetsingh271 Ай бұрын
Impulse resp = 1/RC * e^ -t/RC * u(t) Step resp = [1 - e^ -t/RC]*u(t) ramp resp = [t - RC + RC*e^ -t/RC] *u(t)
@bretthaddin8071
@bretthaddin8071 4 жыл бұрын
Thank you sir
@sanskarkumar6484
@sanskarkumar6484 2 жыл бұрын
thanks Sir🙏❤
@楊柳樹-u8i
@楊柳樹-u8i Жыл бұрын
excellent!
@ss-tp6mz
@ss-tp6mz 4 жыл бұрын
please post the home work problem solution
@PunmasterSTP
@PunmasterSTP 2 жыл бұрын
Ramp response? More like "This information is tops!" Thanks again so much for making and sharing so many high-quality lectures.
@maruthimaruthi3720
@maruthimaruthi3720 4 жыл бұрын
What is full stack web development & full stack gaming development.? what we need in it.?
@francescoejlli8985
@francescoejlli8985 4 жыл бұрын
What's the name of the Digital blackboard you use?
@namratasaini2065
@namratasaini2065 3 жыл бұрын
which is more stable.... impulse response or ramp response?
@sushrutmdhakate9874
@sushrutmdhakate9874 2 жыл бұрын
Bhai , ek baat batana , inverse laplace nikalte waqt kabhi kabhi sir u(t) multiply karte hain aur kabhi nahi . To kisiko pata hain ki kis condition me u(t) multiply karna hota hai ?
@swastikmishra7209
@swastikmishra7209 2 жыл бұрын
u(t) ka value t>=0 time me 1 hota hai
@sushrutmdhakate9874
@sushrutmdhakate9874 2 жыл бұрын
1. 1/CR x e ^ -t/CR 2. e^-t/CR -1 3. e^ -t/CR -1 -t
@lokendrasinghlodhi718
@lokendrasinghlodhi718 Жыл бұрын
Only first is correct ! plz do the caln again.
@bhanderi_anisha
@bhanderi_anisha 3 жыл бұрын
Can anyone explain answer of homework problem ??
@PunmasterSTP
@PunmasterSTP 2 жыл бұрын
What did you get for the answers? If you let me know then I can double-check and explain.
@carultch
@carultch Жыл бұрын
@@PunmasterSTP Start by finding the transfer function of the filter. It is a simple voltage divider where the output voltage is the input voltage times the ratio of impedances. Impedance of capacitor: Zc = 1/(C*s) Impedance of resistor: Zr = R Transfer function H(s) = Zc/(Zc + R) = 1/(C*s)/(1/(C*s) + R) = H(s) = 1/(C*R*s + 1) Output Y(s) = X(s)*H(s), where X(s) is the input Laplace transform. For an impulse, X_imp(s) = 1 For a unit step input, X_step(s) = 1/s For a unit ramp input, X_ramp(s) = 1/s^2 Thus, the output transfer functions are: Y_imp(s) = 1/(C*R*s + 1) Y_step(s) = 1/(C*R*s^2 + s) Y_ramp(s) = 1/(C*R*s^3 + s^2) Take inverse Laplace to find time-domain responses: y_imp(t) = e^(-t/(R*C))/(R*C) y_step(t) = u(t)*(1 - e^(-t/(R*C)) y_ramp(t) = R*C*e^(-t/(R*C)) - R*C*u(t) + t*u(t)
@PunmasterSTP
@PunmasterSTP Жыл бұрын
@@carultch Thanks for sharing! I mostly reply to comments like the original one because I want to encourage students to take the lead and try to figure out things first. I've tutored off and on for many years, so I think it's kind of from force of habit.
@carultch
@carultch Жыл бұрын
@@PunmasterSTP No problem. I'm trying to come up with a transfer function that demonstrates the concept of steady state errors on step/ramp/parabolic inputs, and that eliminates its error when you have the proper number of stand-alone s-terms. The function in question: G(s) = 9/(s^2*(s + 2)) In a simple unity negative feedback loop, with the ramp input 1/s^3. This one simplifies nicely, but the exponential terms grow like crazy instead of decay to zero. The ones that don't simplify nicely, will stump Wolfram alpha. I found your video while trying to search for ideas on what I could do.
@PunmasterSTP
@PunmasterSTP Жыл бұрын
@@carultch That sounds good. Just to be clear, I’m not associated with Neso Academy. I just like to watch some of their videos.
@meralkilicarslan8659
@meralkilicarslan8659 2 жыл бұрын
1.dirac(t)-(1/ح)u(t)e^(-t/ح) 2.u(t)e^((-1/ح)t) 3.-(1/ح)u(t)e^(-t/ح)+حu(t)
Basics of Control Systems (Solved Problem 1)
6:28
Neso Academy
Рет қаралды 59 М.
Step Response of a System
11:29
Neso Academy
Рет қаралды 132 М.
бабл ти гель для душа // Eva mash
01:00
EVA mash
Рет қаралды 4,4 МЛН
Wait for the last one 🤣🤣 #shorts #minecraft
00:28
Cosmo Guy
Рет қаралды 18 МЛН
Cool Parenting Gadget Against Mosquitos! 🦟👶 #gen
00:21
TheSoul Music Family
Рет қаралды 33 МЛН
НАШЛА ДЕНЬГИ🙀@VERONIKAborsch
00:38
МишАня
Рет қаралды 3,3 МЛН
The Step Response | Control Systems in Practice
14:56
MATLAB
Рет қаралды 163 М.
#173 Time response of first order control system || EC Academy
7:58
Time Constant Form of a Control System
7:24
Neso Academy
Рет қаралды 123 М.
Module-3 L:9 Ramp Response of first order system
13:55
Prashant Kadi
Рет қаралды 8 М.
System Dynamics and Control: Module 10 - First-Order Systems
30:50
ELECTRICAL NETWORK TRANSFER FUNCTION MULTIPLE LOOPS
17:34
Engr. Eking Explains
Рет қаралды 12 М.
Ramp response of a transfer function
7:46
Chinmaya A.S.V
Рет қаралды 23 М.
бабл ти гель для душа // Eva mash
01:00
EVA mash
Рет қаралды 4,4 МЛН