Step Response of a System

  Рет қаралды 138,704

Neso Academy

Neso Academy

Күн бұрын

Пікірлер: 44
@princechoudhary5772
@princechoudhary5772 4 жыл бұрын
The work done by this channel for the sake of students is beyond perfection.... the amount of hard work being put on by Neso academy is commendable ... Your work transcends all the best created contents ... Keep working hard and keep growing.. Lots of love and respect.. 😊😊❤🔥 🔥
@sukhdevasole1825
@sukhdevasole1825 4 жыл бұрын
Sir I see your c programming lecture which I saw the best in yt platform......thanks sir for providing such a beautiful content for free❤️
@vishnuchandran243
@vishnuchandran243 3 жыл бұрын
explained in very simple manner, got the concept very well, thanku sir
@mydearsantosh
@mydearsantosh 3 жыл бұрын
Outstanding explanation in short time.
@mohammadkhaliquekhan2041
@mohammadkhaliquekhan2041 4 жыл бұрын
Thanks a lot neso academy please complete control system before gate 2021 it would be so helpful ❤️
@PunmasterSTP
@PunmasterSTP 3 жыл бұрын
How did the Gate go?
@mateoarteaga8274
@mateoarteaga8274 11 ай бұрын
You omitted the unit step function because it is equal to 1 from 0 to infinity, but when you integrate unit step function you get area under the curve which is not equal to 1
@jonathancardonagarcia7476
@jonathancardonagarcia7476 5 ай бұрын
For part b, I performed the convolution of u(t) and h(t) where u(t) is the step input and h(t) is the time domain transfer function. The convolution of u(t) and h(t) is e^(-2t)*u(t). From here, take the derivative with respect to time on both sides. On the left hand side, use the fundamental theorem of calculus part 1 to figure out that the integral of h(tau) d(tau) from 0 to t is just h(t). Note, u(t-tau) is equal to 1 from 0 to t. u(t-tau) represents the shifted function in the convolution operation. On the right hand side, perform the product rule and realize that the derivative of the step input is the Dirac Delta Function (the impulse function). h(t) turns out to be -2e^(-2t)*u(t)+delta_0(t)*e^(-2t). Taking the Laplace Transform of h(t) gives H(s) which is the Transfer Function of the system. H(s) turns out to be -2/(s+2)+1. Multiplying H(s) by 1 gives Y(s), the impulse response. Taking the Inverse Laplace Transform of Y(s) gives y(t) equals delta_0(t)-2*e^(-2t).
@sanskarkumar6484
@sanskarkumar6484 3 жыл бұрын
thanks Sir🙏❤
@ushamemoriya5391
@ushamemoriya5391 8 ай бұрын
Select all the correct answers. A discrete-time system's response to a step input can be found by: Select 2 correct answer(s) Using the convolution sum with a unit step sequence. Integrating the system's transfer function. Applying the initial conditions directly. Summing the impulse responses
@finkelsteinreaction364
@finkelsteinreaction364 2 ай бұрын
A AND D
@sandysandy5866
@sandysandy5866 2 жыл бұрын
great video!!! thanks a lot
@kirtikansal7388
@kirtikansal7388 3 жыл бұрын
please explain the cover-up method in case of repeated roots with squared on the roots
@athuldas44
@athuldas44 Жыл бұрын
We can differentiate also right the step signal to get the impulse
@bretthaddin8071
@bretthaddin8071 4 жыл бұрын
Thank you sir
@Guebong
@Guebong Жыл бұрын
Wonderful
@biswajeetsahoo207
@biswajeetsahoo207 4 жыл бұрын
Keep doing sir
@PunmasterSTP
@PunmasterSTP 3 жыл бұрын
Step response of a system? More like "Super great information!" Thanks again for making and sharing all of these really high-quality videos.
@archanatripathi6616
@archanatripathi6616 2 жыл бұрын
you are really dedicated with these comments.
@PunmasterSTP
@PunmasterSTP 2 жыл бұрын
@@archanatripathi6616 Thanks, and I always try to leave a comment on each video to drive up engagement. I think Neso Academy’s content is outstanding, and more people would be able to benefit from it if it reached a wider audience.
@qozia1370
@qozia1370 Жыл бұрын
so much cringe
@PunmasterSTP
@PunmasterSTP Жыл бұрын
@@qozia1370 And I wouldn’t have it any other way 👍
@qozia1370
@qozia1370 Жыл бұрын
@@PunmasterSTP pathetic
@GokulGokul-iz2to
@GokulGokul-iz2to 4 жыл бұрын
Thank u sir
@sahilyadav5662
@sahilyadav5662 3 жыл бұрын
why we can't find the impulse response by finding the inverse laplace transform of the transfer function H(s)....as in first part you had taken h(t) as impulse response
@PunmasterSTP
@PunmasterSTP 3 жыл бұрын
Yeah I think that might have been conceptually simpler. But since the transform of an impulse is just 1, Y(s) = H(s) in that case and the inverse transforms are the same.
@alandeutsch7769
@alandeutsch7769 7 ай бұрын
Why didn't you just directly take the inverse laplace of H(s)=s/(s+2) to get del(t) - 2e^-2t ?
@falgunichaskar3254
@falgunichaskar3254 3 жыл бұрын
But I read that limits are from minus infinity to t.....pls guide
@PunmasterSTP
@PunmasterSTP 3 жыл бұрын
I think that might be for the bilateral transform, but since most analysis deals only with causal systems, only the unilateral transform is used. Hence we start integrating from t = 0.
@falgunichaskar3254
@falgunichaskar3254 3 жыл бұрын
@@PunmasterSTP okay! Thanks
@PunmasterSTP
@PunmasterSTP 3 жыл бұрын
@@falgunichaskar3254 Np! I know I answered your question a long time after you asked it, but I kind of like replying to older comments. I think it drives up engagement on the videos, and it has also led to some cool conversations.
@biswajeetsahoo207
@biswajeetsahoo207 4 жыл бұрын
Can u create an android playlist pls??
@eda-un8zr
@eda-un8zr 3 жыл бұрын
Wow
@anandh1967
@anandh1967 5 ай бұрын
@kavithaooruchintala1819
@kavithaooruchintala1819 4 жыл бұрын
Sir wt about the content writer?
@PunmasterSTP
@PunmasterSTP 3 жыл бұрын
Was Neso Academy looking to hire a content writer?
@dungaajay6085
@dungaajay6085 4 жыл бұрын
why u r taking .u(t) for impulse and step responses sometimes
@elackiyasakthivel2002
@elackiyasakthivel2002 3 жыл бұрын
u(t) is the input, h(t) is the impulse response and y(t) is the step response
@lordputinrasiaWale
@lordputinrasiaWale 3 жыл бұрын
@@elackiyasakthivel2002 how h(t) is impulse response?
@takbotak9088
@takbotak9088 3 жыл бұрын
As someone who is not from control background, I also have the same confusion. Apparently u(t) is equal to "1" in Laplace table. Adding u(t) there is just for informing that it is a step function equation that we are dealing with. If there is better explanation, please also let me know.
@jainilpatel7375
@jainilpatel7375 3 жыл бұрын
If you see in the first relation of step and impulse response in the video he is saying h(t) as impulse response. You get impulse response when you give impulse signal to the system. Laplace of impulse signal (delta(t)) is 1. Now transfer function is Y(S)/X(S)=H(S) but X(S) would be equal to 1 for impulse response hence you can say Y(S)=H(S) hence your impulse response is equal to H(S).
@MukeshKumar-uj1hi
@MukeshKumar-uj1hi 2 жыл бұрын
@@jainilpatel7375 Nice Explaination,really useful.
Ramp Response of a System
10:04
Neso Academy
Рет қаралды 52 М.
The Step Response | Control Systems in Practice
14:56
MATLAB
Рет қаралды 170 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
Introduction to Convolution Operation
30:42
Neso Academy
Рет қаралды 1 МЛН
System Dynamics and Control: Module 10 - First-Order Systems
30:50
The Impulse Response of Systems
7:25
Barry Van Veen
Рет қаралды 73 М.
Convolution and Unit Impulse Response
9:22
Physics Videos by Eugene Khutoryansky
Рет қаралды 242 М.
Impulse Response and Convolution
9:49
Neso Academy
Рет қаралды 487 М.
SYSTEM PROPERTIES IN TERMS OF IMPULSE RESPONSE
20:50
Prof. Barapate's Tutorials
Рет қаралды 13 М.
Signal Construction Example #1
7:02
Adam Panagos
Рет қаралды 243 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН